La plupart des publications scientifiques référencées ci-dessous sont librement accessibles depuis les bibliothèques fantômes universitaires LibGen, Sci-Hub et Z-Lib.

Alertes

Collectives

  • The 2023 state of the climate report: Entering uncharted territory
    W. J. Ripple, C. Wolf, J. W. Gregg, J. Rockström et al.
    BioScience 73, 841
    (2023) [doi]

  • Scientists' warning on climate change and insects
    J. A. Harvey, K. Tougeron, R. Gols, R. Heinen et al.
    Ecol. Monogr. 93, e1553 (2023)
    [doi]

  • Scientists' warning to humanity on tree extinctions
    M. Rivers, A. C. Newton, S. Oldfield et al.
    Plants People Planet
    2022, 1 (2022) [doi]

  • Modernity is incompatible with planetary limits: Developing a PLAN for the future
    T. W. Murphy Jr., D. J. Murphy, T. F. Love, M. L. A. LeHew & B.J. McCall
    Energy Res. Soc. Sci. 81, 102239 (2021) [doi]

  • Underestimating the challenges of avoiding a ghastly future
    C. J. A. Bradshaw, P. R. Ehrlich, A. Beattie, G. Ceballos et al.
    Front. Conserv. Sci. 1, 615419 (2021)
    [doi]

  • World scientists' warning of a climate emergency
    W. J. Ripple, C. Wolf, T. M. Newsome, P. Barnard & W. R. Moomaw
    BioScience 70, 8 (2020)
    [doi]

  • Scientists' warning on affluence
    T. Wiedmann, M. Lenzen, L. T. Keyßer & J. K. Steinberger
    Nat. Commun. 11, 3107 (2020)
    [doi]

  • Maintaining biodiversity will define our long-term success
    P. Raven & M. Wackernagel
    Plant Divers. 42, 211 (2020)
    [doi]

  • Climate tipping points — too risky to bet against
    T. M. Lenton, J. Rockström, O. Gaffney, S. Rahmstorf et al.
    Nature 575, 592 (2019)
    [doi]

  • Pervasive human-driven decline of life on Earth points to the need for transformative change
    S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo et al.
    Science 366, 1327 (2019)
    [doi]

  • World scientists' warning to humanity: A second notice
    W. J. Ripple, C. Wolf, T. M. Newsome, M. Galetti et al.
    BioScience 67, 1026 (2017)
    [doi]

Individuelles

  • Returning to "normal"? Evolutionary roots of the human prospect
    P. R. Ehrlich & A. H. Ehrlich
    BioScience
    72, 778 (2022) [doi]

  • The fractal biology of plague and the future of civilization
    W. E. Rees
    J. Popul. Sustain. 5, 15 (2020)
    [doi]

  • There is no Plan B for dealing with the climate crisis
    R. Pierrehumbert
    Bull. At. Sci. 75, 215 (2019)
    [doi]

  • This changes nothing: The Paris Agreement to ignore reality
    C. L. Spash
    Globalizations 13, 928 (2016) [doi]

  • Duality in climate science
    K. Anderson
    Nat. Geosci. 8, 898 (2015) [doi]

Appels à l'action

  • "No research on a dead planet": preserving the socio-ecological conditions for academia
    A. Thierry, L. Horn, P. von Hellermann & C. J. Gardner
    Front. Educ. 8, 1237076 (2023)
    [doi]

  • Rethinking academia in a time of climate crisis
    A. Urai & C. Kelly
    eLife
    12, e84991 (2023) [doi]

  • Civil disobedience by scientists helps press for urgent climate action
    S. Capstick, A. Thierry, E. Cox, O. Berglund et al.
    Nat. Clim. Chang. 12, 773 (2022) [doi]

  • The biospheric emergency calls for scientists to change tactics
    F. Racimo, E. Valentini, G. Rijo de León et al.,
    eLife 11, e83292 (2022)
    [doi]

  • The tragedy of climate change science
    B. C. Glavovic, T. F. Smith & I. White
    Clim. Dev.
    14, 829 (2022) [doi]

  • It's not enough to be right! The climate crisis, power, and the climate movement
    A. Pohlmann, K. Walz, A. Engels, S. C. Aykut et al.
    GAIA 30, 231 (2021)
    [doi]

  • In the climate emergency, conservation must become survival ecology
    C. J. Gardner & J. M. Bullock
    Front. Conserv. Sci. 2, 659912 (2021)
    [doi]

  • From publications to public actions: The role of Universities in facilitating academic advocacy and activism in the climate and ecological emergency
    C. J. Gardner, A. Thierry, W. Rowlandson & J. K. Steinberger
    Front. Sustain. 2, 679019 (2021)
    [doi]

  • Less talk, more walk: Why climate change demands activism in the Academy
    J. F. Green
    Daedalus 149, 151 (2020)
    [doi]

  • Concerns of young protesters are justified
    G. Hagedorn, P. Kalmus, M. Mann, S. Vicca et al.
    Science 364, 139 (2019)
    [doi]

  • Scientists must act on our own warnings to humanity
    C. J. Gardner & C. F. R. Wordley
    Nat. Ecol. Evol. 3, 1271 (2019)
    [doi]

  • On advocacy by environmental scientists: What, whether, why, and how?
    M. P. Nelson & J. A. Vucetich
    Conserv. Biol. 23, 1090 (2009)
    [doi]


Anthropocène

Nouvelle époque géologique

  • The Anthropocene as an Event, not an Epoch
    P. Gibbard, M. Walker, A. Bauer, M. Edgeworth et al.
    J. Quat. Sci.
    37, 395 (2022) [doi]

  • The Working Group on the Anthropocene: Summary of evidence and interim recommendations
    J. Zalasiewicz, C. N. Waters, C. P. Summerhayes, A. P. Wolfe et al.
    Anthropocene 19, 55 (2017)
    [doi]

  • The Anthropocene is functionally and stratigraphically distinct from the Holocene
    C. N. Waters, J. Zalasiewicz, C. Summerhayes, A. D. Barnosky et al.
    Science 351, aad2622 (2016)
    [doi]

  • The Anthropocene: A conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere
    M. Williams, J. Zalasiewicz, C. N. Waters, M. Edgeworth et al.
    Earth's Future 4, 34 (2016)
    [doi]

  • Defining the Anthropocene
    S. L. Lewis & M. A. Maslin
    Nature 519, 171 (2015) [doi]

Énergie, biosphère et sociétés humaines

  • Plastics in the Earth system
    A. Stubbins, K. Lavender Law, S. E. Muñoz, T. S. Bianchi & L. Zhu
    Science 373, 51 (2021) [doi]

  • Global human-made mass exceeds all living biomass
    E. Elhacham, L. Ben-Uri, J. Grozovski, Y. M. Bar-On & R. Milo
    Nature
    588, 442 (2020) [doi]

  • The broiler chicken as a signal of a human reconfigured biosphere
    C. E. Bennett, R. Thomas, M. Williams, J. Zalasiewicz et al.
    R. Soc. Open Sci. 5, 180325 (2018) [doi]

  • Humans are the most significant global geomorphological driving force of the 21st century
    A. H. Cooper, T. J. Brown, S. J. Price, J. R. Ford & C. N. Waters
    Anthr. Rev. 5, 222 (2018) [doi]

  • Revolutions in energy input and material cycling in Earth history and human history
    T. M. Lenton , P.-P. Pichler & H. Weisz
    Earth Syst. Dynam. 7, 353 (2016)
    [doi]

  • The Anthropocene biosphere
    M. Williams, J. Zalasiewicz, P. K. Haff, C. Schwägerl et al.
    Anthr. Rev. 2, 196 (2015) [doi]

  • Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind
    J. R. Schramski, D. K. Gattie & J. H. Brown
    Proc. Natl. Acad. Sci. 112, 9511 (2015) [doi]

  • The material footprint of nations
    T. O. Wiedmann, H. Schandl, M. Lenzen, D. Moran et al.
    Proc. Natl. Acad. Sci. 112, 6271 (2015) [doi]

Grande accélération

  • The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch
    M. J. Head, W. Steffen, D. Fagerlind, C. N. Waters et al.
    Episodes
    45, 359 (2022) [doi]

  • Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch
    J. Syvitski, C. N. Waters, J. Day, J. D. Milliman et al.
    Commun. Earth Environ.
    1, 32 (2020) [doi]

  • The trajectory of the Anthropocene: The Great Acceleration
    W. Steffen, W. Broadgate, L. Deutsch, O. Gaffney & C. Ludwig
    Anthr. Rev. 2, 81 (2015) [doi]

Limites planétaires

  • Earth beyond six of nine planetary boundaries
    K. Richardson, W. Steffen, W. Lucht, J. Bendtsen et al.
    Sci. Adv. 9, eadh2458 (
    2023) [doi]

  • A planetary boundary for green water
    L. Wang-​Erlandsson, A. Tobian, R. J. van der Ent, I. Fetzer et al.
    Nat. Rev. Earth. Environ.
    3, 380 (2022) [doi]

  • Outside the safe operating space of the planetary boundary for novel entities
    L. Persson, B. M. Carney Almroth, C. D. Collins, S. Cornell et al.
    Environ. Sci. Technol.
    56, 1510 (2022) [doi]

  • A good life for all within planetary boundaries
    D. W. O'Neill, A. L. Fanning, W. F. Lamb & J. K. Steinberger
    Nat. Sustain. 1, 88 (2018)
    [doi]

  • Planetary boundaries: Guiding human development on a changing planet
    W. Steffen, K. Richardson, J. Rockström, S. E. Cornell et al.
    Science 347, 1259855 (2015)
    [doi]

  • A safe operating space for humanity
    J. Rockström, W. Steffen, K. Noone, Å. Persson et al.
    Nature 461, 472 (2009)
    [doi]


Énergie

Pic pétrolier

  • How much oil remains for the world to produce? Comparing assessment methods, and separating fact from fiction
    J. Laherrère, C. A. S. Hall & R. Bentley
    Curr. Res. Environ. Sustain. 4, 100174 (2022) [doi]

  • Peak oil and the low-carbon energy transition: A net-energy perspective
    L. Delannoy, P.-Y. Longaretti, D. J. Murphy & E. Prados,
    Appl. Energy 304, 117843 (2021) [doi]

  • Is the oil industry able to support a world that consumes 105 million barrels of oil per day in 2025?
    P. Hacquard, M. Simoën & E. Hache
    Oil Gas Sci. Technol. 74, 88 (2019)
    [doi]

  • A regional oil extraction and consumption model. Part II: Predicting the declines in regional oil consumption
    M. Dittmar
    Biophys. Econ. Resour. Qual. 2, 16 (2017) [doi]

  • The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis
    J. Wang, L. Feng, X. Tang, Y. Bentley & M. Höök
    Futures 86, 58 (2017)
    [doi]

  • Projection of world fossil fuels by country
    S. H. Mohr, J. Wang, G. Ellem, J. Ward & D. Giurco
    Fuel 141, 120 (2015)
    [doi]

  • A reality check on the shale revolution
    J. D. Hughes
    Nature 494, 307 (2013)
    [doi]

  • When will oil, natural gas, and coal peak?
    G. Maggio & G. Cacciola
    Fuel 98, 111 (2012) [doi]

Transition énergétique

  • Energy requirements and carbon emissions for a low-carbon energy transition
    A. Slameršak, G. Kallis & D. W. O'Neill
    Nat. Commun. 13, 6932 (2022) [doi]

  • Through the eye of a needle: An eco-heterodox perspective on the renewable energy transition
    M. K. Seibert & W. E. Rees
    Energies 14, 4508 (2021) [doi]

  • Energy transitions or additions? Why a transition from fossil fuels requires more than the growth of renewable energy
    R. York & S. E. Bell
    Energy Res. Soc. Sci. 51, 40 (2019) [doi]

  • What we need to know about the pace of decarbonization
    V. Smil
    Substantia 3, 69 (2019)
    [doi]

  • Examining energy transitions: A dozen insights based on performance
    V. Smil
    Energy Res. Soc. Sci. 22, 194 (2016) [doi]

  • No quick switch to low-carbon energy
    G. J. Kramer & M. Haigh
    Nature 462, 568 (2009) [doi]

Énergies dites renouvelables

  • The limits of renewable energy
    P. Moriarty & D. Honnery
    AIMS Energy 9, 812 (2021) [doi]

  • Feasibility of a 100% global renewable energy system
    P. Moriarty & D. Honnery
    Energies 13, 5543 (2020)
    [doi]

  • Can renewable energy power the future?
    P. Moriarty & D. Honnery
    Energy Policy 93, 3 (2016) [doi]

  • Global solar electric potential: A review of their technical and sustainable limits
    C. de Castro, M. Mediavilla, L. J. Miguel & F. Frechoso

    Renew. Sustain. Energy Rev. 28, 824 (2013)
    [doi]

Taux de retour énergétique

  • Energy return on investment of major energy carriers: Review and harmonization
    D. J. Murphy, M. Raugei, M. Carbajales-Dale & B. Rubio Estrada
    Sustainability 14, 7098 (2022
    ) [doi]

  • Assessing global long-term EROI of gas: A net-energy perspective on the energy transition
    L. Delannoy, P.-Y. Longaretti, D. J. Murphy & E. Prados,
    Energies 14, 5112 (2021) [doi]

  • Standard, point of use, and extended energy return on energy invested (EROI) from comprehensive material requirements of present global wind, solar, and hydro power technologies
    C. de Castro & I. Capellán-Pérez
    Energies 13, 3036 (2020)
    [doi]

  • Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources
    P. E. Brockway, A. Owen, L. I. Brand-Correa & L. Hardt
    Nat. Energy 4, 612 (2019)
    [doi]

  • Implications of net energy-return-on-investment for a low-carbon energy transition
    L. C. King & J. C. J. M. van den Bergh
    Nat. Energy 3, 334 (2018) [doi]

  • Long-term estimates of the energy-return-on-investment (EROI) of coal, oil, and gas global productions
    V. Court & F. Fizaine
    Ecol. Econ. 138, 145 (2017) [doi]

  • How does energy resource depletion affect prosperity? Mathematics of a minimum energy return on investment (EROI)
    A. R. Brandt
    Biophys. Econ. Resour. Qual. 2, 2 (2017) [doi]

  • The implications of the declining energy return on investment of oil production
    D. J. Murphy
    Phil. Trans. R. Soc. A 372, 20130126 (2014)
    [doi]

  • EROI of different fuels and the implications for society
    C. A. S. Hall, J. G. Lambert & S. B. Balogh
    Energy Policy 64, 141 (2014)
    [doi]

Énergie, société et complexité

  • Inequality can double the energy required to secure universal decent living
    J. Millward-Hopkins
    Nat. Commun. 13, 5028 (2022) [doi]

  • Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications
    P. E. Brockway, S. Sorrell, G. Semieniuk, M. Kuperus Heun & V. Court
    Renew. Sustain. Energy Rev. 141, 110781 (2021) [doi]

  • Providing decent living with minimum energy: A global scenario
    J. Millward-Hopkins, J. K. Steinberger, N. D. Rao & Y. Oswald
    Glob. Environ. Change 65, 102168
    (2020)
    [doi]

  • An estimation of different minimum exergy return ratios required for society
    V. Court
    Biophys. Econ. Resour. Qual. 4, 11 (2019) [doi]

  • The changing meaning of energy return on investment and the implications for the prospects of post-fossil civilization
    E. White & G. J. Kramer
    One Earth 1, 416 (2019)
    [doi]

  • The energy pillars of society: Perverse interactions of human resource use, the economy, and environmental degradation
    J. W. Day, C. F. D'Elia, A. R. H. Wiegman, J. S. Rutherford et al.
    Biophys. Econ. Resour. Qual. 3, 2 (2018) [doi]

  • Energy expenditure, economic growth, and the minimum EROI of society
    F. Fizaine & V. Court
    Energy Policy 95, 172 (2016)
    [doi]

  • Energy, EROI and quality of life
    J. G. Lambert,
    C. A. S. Hall, S. Balogh, A. Gupta & M. Arnold
    Energy Policy 64, 153 (2014)
    [doi]


Climat

Insécurité alimentaire globale

  • Risks of synchronized low yields are underestimated in climate and crop model projections
    K. Kornhuber, C. Lesk, C. F. Schleussner, J. Jägermeyr et al.
    Nat. Commun. 14, 3528 (2023) [doi]

  • Climate change risks pushing one-third of global food production outside the safe climatic space
    M. Kummu, M. Heino, M. Taka, O. Varis & D. Viviroli
    One Earth 4, 720 (2021) [doi]

  • Global vulnerability of crop yields to climate change
    I. Sue Wing, E. De Cian & M. N. Mistry
    J. Environ. Econ. Manag. 109, 102462
    (2021) [doi]

  • Increasing risks of multiple breadbasket failure under 1.5 and 2°C global warming
    F. Gauppa, J. Halla, D. Mitchell & S. Dadson
    Agric. Syst. 175, 34 (2019)
    [doi]

  • Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector
    T. Lunt, A. W. Jones, W. S. Mulhern, D. P. M. Lezaks et al.
    Clim. Risk Manag. 13, 1 (2016)
    [doi]

  • Influence of extreme weather disasters on global crop production
    C. Lesk, P. Rowhani & N. Ramankutty
    Nature 529, 84 (2016)
    [doi]

Stress thermique mortel

  • Quantifying the human cost of global warming
    T. M. Lenton, C. Xu, J. F. Abrams, A. Ghadiali et al.
    Nat. Sustain. 6, 1237 (2023) [doi]

  • Probabilistic projections of increased heat stress driven by climate change
    L. R. Vargas Zeppetello, A. E. Raftery & D. S. Battisti
    Commun. Earth Environ. 3, 183
    (2023) [doi]

  • Rapidly increasing likelihood of exceeding 50°C in parts of the Mediterranean and the Middle East due to human influence
    N. Christidis, D. Mitchell & P. A. Stott
    npj Clim. Atmos. Sci. 6, 45 (2023) [doi]

  • Increasing heat-stress inequality in a warming climate
    M. R. Alizadeh, J. T. Abatzoglou, J. F. Adamowski, J. P. Prestemon et al.
    Earth's Future 10, e2021EF002488 (2022)
    [doi]

  • Intergenerational inequities in exposure to climate extremes
    W. Thiery, S. Lange, J. Rogelj, C.-F. Schleussner et al.
    Science 374, 158 (2021) [doi]

  • Increasing probability of record-shattering climate extremes
    E. M. Fischer, S. Sippel & R. Knutti
    Nat. Clim. Chang. 11, 698 (2021) [doi]

  • Deadly heat stress to become commonplace across South Asia already at 1.5°C of global warming
    F. Saeed, C.-F. Schleussner & M. Ashfaq
    Geophys. Res. Lett. 48, e2020GL091191 (2021)
    [doi]

  • The emergence of heat and humidity too severe for human tolerance
    C. Raymond, T. Matthews & R. M. Horton
    Sci. Adv. 6, eaaw1838 (2020) [doi]

  • Extreme heat waves under 1.5°C and 2°C global warming
    A. Dosio, L. Mentaschi, E. M. Fischer & K. Wyser
    Environ. Res. Lett. 13, 054006
    (2018) [doi]

  • Global risk of deadly heat
    C. Mora, B. Dousset, I. R. Caldwell, F. E. Powell et al.

    Nat. Clim. Chang. 7, 501 (2017)
    [doi]

  • Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century
    E. D. Coffel, R. M. Horton & A. de Sherbinin
    Environ. Res. Lett. 13, 014001
    (2017) [doi]

  • Future summer mega-heatwave and record-breaking temperatures in a warmer France climate
    M. Bador, L. Terray, J. Boé, S. Somot et al.
    Environ. Res. Lett. 12, 074025
    (2017) [doi]

Montée du niveau des mers

  • Greenland ice sheet climate disequilibrium and committed sea-level rise
    J. E. Box, A. Hubbard, D. B. Bahr, W. T. Colgan et al.
    Nat. Clim. Chang. 12, 808 (2022) [doi]

  • Extreme sea levels at different global warming levels
    C. Tebaldi, R. Ranasinghe, M. Vousdoukas, D. J. Rasmussen et al.
    Nat. Clim. Chang. 11, 746 (2021) [doi]

  • New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding
    S. A. Kulp & B. H. Strauss
    Nat. Commun. 10, 4844 (2019) [doi]

  • Ice sheet contributions to future sea-level rise from structured expert judgment
    J. L. Bamber, M. Oppenheimer, R. E. Kopp, W. P. Aspinall & R. M. Cooke
    Proc. Natl. Acad. Sci. 116, 11195 (2019) [doi]

  • The Greenland and Antarctic ice sheets under 1.5°C global warming
    F. Pattyn, C. Ritz, E. Hanna, X. Asay-Davis et al.
    Nat. Clim. Chang. 8, 1053 (2018) [doi]

Climat et vie océanique

  • Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea
    J. Garrabou, D. Gómez-­Gras, A. Medrano, C. Cerrano et al.
    Glob. Change Biol. 28, 5708 (2022) [doi]

  • Implications of the Paris agreement for the ocean
    A. K. Magnan, M. Colombier, R. Billé, F. Joos et al.
    Nat. Clim. Chang. 6, 732 (2016) [doi]

  • Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios
    J.-P. Gattuso, A. Magnan, R. Billé, W. W. L. Cheung et al.
    Science 349, aac4722 (2015) [doi]

  • Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century
    C. Mora, C.-L. Wei, A. Rollo, T. Amaro et al.
    PLoS Biol. 11, e1001682 (2013) [doi]

  • Ocean acidification: The other CO2 problem
    S. C. Doney, V. J. Fabry, R. A. Feely & J. A. Kleypas
    Annu. Rev. Mar. Sci. 1, 169 (2009) [doi]

Possible emballement climatique

  • Global warming overshoots increase risk of triggering climate tipping points and cascades
    N. Wunderling, R. Winkelmann, J. Rockström, S. Loriani et al.
    Nat. Clim. Chang. 13, 75 (2023) [doi]

  • Climate Endgame: Exploring catastrophic climate change scenarios
    L. Kemp, C. Xu, J. Depledge, K. L. Ebi et al.
    Proc. Natl. Acad. Sci. 119, e2108146119 (2022) [doi]

  • Exceeding 1.5°C global warming could trigger multiple climate tipping points
    D. I. Armstrong McKay, A. Staal, J. F. Abrams, R. Winkelmann et al.
    Science 377, 1171 (2022) [doi]

  • The quiet crossing of ocean tipping points
    C. Heinze, T. Blenckner, H. Martins, D. Rusiecka et al.
    Proc. Natl. Acad. Sci. 118, e2008478118 (2021) [doi]

  • Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2°C target
    P. R. Liu & A. E. Raftery
    Commun. Earth Environ. 2, 29 (2021) [doi]

  • A multi-model analysis of long-term emissions and warming implications of current mitigation efforts
    I. Sognnaes, A. Gambhir, D.-J. van de Ven, A. Nikas et al.
    Nat. Clim. Chang. 11, 1055 (2021) [doi]

  • Possible climate transitions from breakup of stratocumulus decks under greenhouse warming
    T. Schneider, C. M. Kaul & K. G. Pressel
    Nat. Geosci. 12, 163 (2019)
    [doi]

  • Trajectories of the Earth system in the Anthropocene
    W. Steffen, J. Rockström, K. Richardson, T. M. Lenton et al.
    Proc. Natl. Acad. Sci. 115, 8252 (2018) [doi]

  • Less than 2°C warming by 2100 unlikely
    A. E. Raftery, A. Zimmer, D. M. W. Frierson, R. Startz & P. Liu
    Nat. Clim. Chang. 7, 637 (2017)
    [doi]

  • Well below 2°C: Mitigation strategies for avoiding dangerous to catastrophic climate changes
    Y. Xu & V. Ramanathan
    Proc. Natl. Acad. Sci. 114, 10315 (2017) [doi]

Perspective géologique

  • Current Siberian heating is unprecedented during the past seven millennia
    R. M. Hantemirov, C. Corona, S. Guillet, S. G. Shiyatov et al.
    Nat. Commun. 13, 4968 (2022) [doi]

  • Atmospheric CO2 over the past 66 million years from marine archives
    J. W. B. Rae, Y. G. Zhang, X. Liu, G. L. Foster et al.
    Annu. Rev. Earth Planet. Sci. 49, 609 (2021)
    [doi]

  • Future of the human climate niche
    C. Xu, T. A. Kohler, T. M. Lenton, J.-C. Svenning & M. Scheffer
    Proc. Natl. Acad. Sci. 117, 11350 (2020) [doi]

  • Past extinctions of Homo species coincided with increased vulnerability to climatic change
    P. Raia, A. Mondanaro, M. Melchionna, M. Di Febbraro et al.
    One Earth 3, 480 (2020) [doi]

  • Pliocene and Eocene provide best analogs for near-future climates
    K. D. Burke, J. W. Williams, M. A. Chandler, A. M. Haywood et al.
    Proc. Natl. Acad. Sci. 115, 13288 (2018) [doi]

  • Future climate forcing potentially without precedent in the last 420 million years
    G. L. Foster, D. L. Royer & D. J. Lunt
    Nat. Commun. 8, 14845 (2017) [doi]

  • Consequences of twenty-first-century policy for multi-millennial climate and sea-level change
    P. U. Clark, J. D. Shakun, S. A. Marcott, A. C. Mix et al.
    Nat. Clim. Chang. 6, 360 (2016)
    [doi]

Sensibilité climatique

  • Global warming in the pipeline
    J. E. Hansen, M. Sato, L. Simons, L. S. Nazarenko et al.
    Oxford Open Clim. Change 3, kgad008 (2023) [doi]

  • Observational constraint on the climate sensitivity to atmospheric CO2 concentrations changes derived from the 1971–2017 global energy budget
    J. Chenal, B. Meyssignc, A. Ribes & R. Guillaume-Castel
    J. Clim. 35, 4469 (2022)
    [doi]

  • An assessment of Earth's climate sensitivity using multiple lines of evidence
    S. C. Sherwood, M. J. Webb, J. D. Annan, K. C. Armour et al.
    Rev. Geophys. 58, e2019RG000678
    (2020) [doi]

  • Climate sensitivity in the geologic past
    D. L. Royer
    Annu. Rev. Earth Planet. Sci. 44, 277 (2016)
    [doi]


Écologie

Sixième extinction de masse

  • The sixth mass extinction: fact, fiction or speculation?
    R. H. Cowie, P. Bouchet & B. Fontaine
    Biol. Rev. 97, 640 (2022) [doi]

  • Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction
    G. Ceballos, P. R. Ehrlich & P. H. Raven
    Proc. Natl. Acad. Sci. 117, 13596 (2020) [doi]

  • Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines
    G. Ceballos, P. R. Ehrlich & R. Dirzo
    Proc. Natl. Acad. Sci. 114, 6089 (2017) [doi]

  • Accelerated modern human–induced species losses: Entering the sixth mass extinction
    G. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. García et al.
    Sci. Adv. 1, e1400253 (
    2015) [doi]

  • Has the Earth's sixth mass extinction already arrived?
    A. D. Barnosky, N. Matzke, S. Tomiya, G. O. U. Wogan et al.
    Nature 471, 51 (2011) [doi]

Climat et extinctions massives

  • Mass extinctions and their relationship with atmospheric carbon dioxide concentration: Implications for Earth's future
    W. Jackson Davis
    Earth's Future 11, e2022EF003336 (2023)
    [doi]

  • Avoiding ocean mass extinction from climate warming
    J. L. Penn & C. Deutsch
    Science 376, 524 (2022)
    [doi]

  • Evaluation of animal and plant diversity suggests Greenland's thaw hastens the biodiversity crisis
    C. Ureta, S. Ramírez-Barahona, Ó. Calderón-Bustamante, P. Cruz-Santiago et al.
    Commun. Biol. 5, 985 (2022) [doi]

  • Faster ocean warming threatens richest areas of marine biodiversity
    S. C. Brown, C. Mellin, J. García Molinos, E. D. Lorenzen & D. A. Fordham
    Glob. Change Biol. 28, 5849 (2022) [doi]

  • Thresholds of temperature change for mass extinctions
    H. Song, D. B. Kemp, L. Tian, D. Chu et al.
    Nat. Commun. 12, 4694 (2021) [doi]

  • Co-extinctions annihilate planetary life during extreme environmental change
    G. Strona & C. J. A. Bradshaw
    Sci. Rep. 8, 16724 (2018)
    [doi]

Biodiversité

  • Expert perspectives on global biodiversity loss and its drivers and impacts on people
    F. Isbell, P. Balvanera, A. S. Mori, J.-­S. He et al.
    Front. Ecol. Environ. 21, 94
    (2023) [doi]

  • Less overall, but more of the same: drivers of insect population trends lead to community homogenization
    M. M. Gossner, F. Menzel & N. K. Simons
    Biol. Lett. 19, 20230007 (2023)
    [doi]

  • Coextinctions dominate future vertebrate losses from climate and land use change
    G. Strona & C. J. A. Bradshaw
    Sci. Adv. 8, eabn4345 (2022)
    [doi]

  • Genetic diversity loss in the Anthropocene
    M. Exposito-Alonso, T. R. Booker, L. Czech, L. Gillespie et al.
    Science 377, 1431 (2022)
    [doi]

  • More than half of data deficient species predicted to be threatened by extinction
    J. Borgelt, M. Dorber, M. Alnes Høiberg & F. Verones
    Commun. Biol. 5, 679 (2022) [doi]

  • A global reptile assessment highlights shared conservation needs of tetrapods
    N. Cox, B. E. Young, P. Bowles, M. Fernandez et al.
    Nature 605, 285 (2022)
    [doi]

  • Worldwide occurrence records suggest a global decline in bee species richness
    E. E. Zattara & M. A. Aizen
    One Earth 4, 114 (2021) [doi]

  • Further evidence for a global decline of the entomofauna
    F. Sánchez-Bayo & K. A. G. Wyckhuys
    Austral Entomol. 60, 9 (2021)
    [doi]

  • An inconvenient misconception: Climate change is not the principal driver of biodiversity loss
    Tim Caro, Z. Rowe, J. Berger, P. Wholey & A. Dobson
    Conserv. Lett. 15, e12868 (2021) [doi]

  • Worldwide decline of the entomofauna: A review of its drivers
    F. Sánchez-Bayo & K. A. G. Wyckhuys
    Biol. Conserv. 232, 8 (2019)
    [doi]

  • Arthropod decline in grasslands and forests is associated with landscape-level drivers
    S. Seibold, M. M. Gossner, N. K. Simons, N. Blüthgen et al.
    Nature 574, 671 (2019)
    [doi]

  • The importance and benefits of species
    C. Gascon, T. M. Brooks, T. Contreras-MacBeath, N. Heard et al.
    Curr. Biol. 25, R413 (2015) [doi]

  • Impacts of biodiversity loss on ocean ecosystem services
    B. Worm et al.
    Science 314, 787 (2006)
    [doi]

Biomasse

  • The global biomass of wild mammals
    L. Greenspoon, E. Krieger, R. Sender, Y. Rosenberg et al.
    Proc. Natl. Acad. Sci. 120, e2204892120 (2023) [doi]

  • Decline of the North American avifauna
    K. V. Rosenberg, A. M. Dokter, P. J. Blancher, J. R. Sauer et al.
    Science 366, 120 (2023) [doi]

  • Abundance decline in the avifauna of the European Union reveals cross-­continental similarities in biodiversity change
    F. Burns, M. A. Eaton, I. J. Burfield, A. Klvaňová et al.
    Ecol. Evol. 11, 16647 (2021) [doi]

  • The biomass distribution on Earth
    Y. M. Bar-On, R. Phillips & R. Milo
    Proc. Natl. Acad. Sci. 115, 6506 (2018) [doi]

  • Persisting worldwide seabird-fishery competition despite seabird community decline
    D. Grémillet, A. Ponchon, M. Paleczny, M.-L. D. Palomares et al.
    Curr. Biol. 28, 4009 (2018) [doi]

  • Predicting global killer whale population collapse from PCB pollution
    J.-P. Desforges, A. Hall, B. McConnell, A. Rosing-Asvid et al.
    Science 361, 1373 (2018) [doi]

  • Climate-driven declines in arthropod abundance restructure a rainforest food web
    B. C. Lister & A. Garcia
    Proc. Natl. Acad. Sci. 115, E10397 (2018) [doi]

  • More than 75 percent decline over 27 years in total flying insect biomass in protected areas
    C. A. Hallmann, M. Sorg, E. Jongejans, H. Siepel et al.
    PLoS ONE 12, e0185809 (2017)
    [doi]

  • Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining
    D. Pauly & D. Zeller
    Nat. Commun. 7, 10244 (2016) [doi]

  • Population trend of the world's monitored seabirds, 1950-2010
    M. Paleczny, E. Hammill, V. Karpouzi & D. Pauly
    PLoS ONE 10, e0129342 (2015) [doi]

Empreinte écologique

  • Global land use changes are four times greater than previously estimated
    K. Winkler, R. Fuchs, M. Rounsevell & M. Herold
    Nat. Commun. 12, 2501 (2021) [doi]

  • Ecological footprint accounting for countries: Updates and results of the national footprint accounts, 2012-2018
    D. Lin, L. Hanscom, A. Murthy, A. Galli et al.
    Resources 7, 58 (2018)
    [doi]

  • Catastrophic declines in wilderness areas undermine global environment targets
    J. E. M. Watson, D. F. Shanahan, M. Di Marco, J. Allan et al.
    Curr. Biol. 26, 2929 (2016)
    [doi]

  • Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment
    T. Newbold, L. N. Hudson, A. P. Arnell, S. Contu et al.
    Science 353, 288 (2016)
    [doi]

  • Humanity's unsustainable environmental footprint
    A. Y. Hoekstra & T. O. Wiedmann
    Science 344, 1114 (2014)
    [doi]

  • Approaching a state shift in Earth's biosphere
    A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow et al.
    Nature 486, 52 (2012)
    [doi]

Pollutions plastiques

  • Global mass of buoyant marine plastics dominated by large long-lived debris
    M. L. A. Kaandorp, D. Lobelle, C. Kehl, H. A. Dijkstra et al.
    Nat. Geosci. 16, 689 (2023) [doi]

  • Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances (PFAS)
    I. T. Cousins, J. H. Johansson, M.E. Salter, B. Sha & M. Scheringer
    Environ. Sci. Technol. 56, 11172 (2022) [doi]

  • Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution
    S. B. Borrelle, J. Ringma, K. Lavender Law, C. C. Monnahan et al.
    Science 369, 1515 (2020) [doi]

  • Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic
    L. Lebreton, B. Slat, F. Ferrari, B. Sainte-Rose et al.
    Sci. Rep. 8, 4666 (2018) [doi]

  • Production, use, and fate of all plastics ever made
    R. Geyer, J. R. Jambeck & K. Lavender Law
    Sci. Adv. 3, e1700782 (2017) [doi]


Économie

Économie néoclassique

  • The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change
    N. Stern, J. Stiglitz & C. Taylor
    J. Econ. Methodol. 29, 181 (2022) [doi]

  • The failure of Integrated Assessment Models as a response to ‘climate emergency’ and ecological breakdown: the Emperor has no clothes
    S. Asefi-Najafabadya, L. Villegas-Ortizb & J. Morgan

    Globalizations 18, 1178 (2021)
    [doi]

  • The appallingly bad neoclassical economics of climate change
    S. Keen

    Globalizations 18, 1149 (2021)
    [doi]

  • Economics and the climate catastrophe
    J. K. Galbraith

    Globalizations 18, 1117 (2021)
    [doi]

  • The ultimate cost of carbon
    D. Archer, E. Kite & G. Lusk
    Clim. Change 162, 2069 (2020)
    [doi]

  • The inefficiency of the neoclassical paradigm in the promotion of subjective well-being and socioeconomic, and environmental sustainability
    M. Membiela-Pollán, M. Alló-Pazos, C. Pateiro-Rodríguez & F. Blázquez-Lozano
    Sustainability 11, 7102 (2019
    ) [doi]

  • How energy conversion drives economic growth far from the equilibrium of neoclassical economics
    R. Kümmel & D. Lindenberger
    New J. Phys. 16, 125008 (2014) [doi]

  • What every conservation biologist should know about economic theory
    J. Gowdy, C. Hall, K. Klitgaard & L. Krall

    Conserv. Biol. 24, 1440 (2010)
    [doi]

Économie écologique

  • Imperialist appropriation in the world economy: Drain from the global South through unequal exchange, 1990-2015
    J. Hickel, C. Dorninger, H. Wieland & I. Suwandi

    Glob. Environ. Change 73, 102467 (2022)
    [doi]

  • Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century
    C. Dorninger, A. Hornborg, D. J. Abson, H. van Wehrden et al.
    Ecol. Econ. 179, 106824 (2021) [doi]

  • Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems
    R. E. Melgar-Melgar & C. A. S. Hall
    Ecol. Econ. 169, 106567 (2020) [doi]

  • Economics for the future Beyond the superorganism
    N. J. Hagens
    Ecol. Econ. 169, 106520 (2020)
    [doi]

  • Ecological economics for humanity's plague phase
    W. E. Rees
    Ecol. Econ. 169, 106519 (2020) [doi]

  • A tale of three paradigms: Realising the revolutionary potential of ecological economics
    C. L. Spash
    Ecol. Econ. 169, 106518 (2020) [doi]

  • Roots, riots, and radical change  A road less travelled for ecological economics
    E. Pirgmaier & J. K. Steinberger
    Sustainability 11, 2001 (2019
    )
    [doi]

  • From the ground up: Ecofeminism and ecological economics
    M. McMahon
    Ecol. Econ. 20, 163 (1997) [doi]

Économie biophysique

  • Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model
    P. Jacques, L. Delannoy, B. Andrieu, D. Yilmaz et al.
    Ecol. Econ. 209, 107832 (2023) [doi]

  • Digitalization and energy consumption. Does ICT reduce energy demand?
    S. Lange, J. Pohl & T. Santarius
    Ecol. Econ. 176, 106760 (2020) [doi]

  • Energy, entropy, constraints, and creativity in economic growth and crises
    R. Kümmel & D. Lindenberger
    Entropy 22, 1156 (2020) [doi]

  • Spaceship earth's odyssey to a circular economy a century long perspective
    W. Haas , F. Krausmann, D. Wiedenhofer, C. Lauk & A. Mayer
    Resour. Conserv. Recycl. 163, 105076 (2020) [doi]

  • From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015
    F. Krausmann, C. Lauk, W. Haas & D. Wiedenhofer
    Glob. Environ. Change 52, 131 (2018) [doi]

  • Useful work and information as drivers of economic growth
    B. Warr & R. U. Ayres
    Ecol. Econ. 73, 93 (2012) [doi]

Découplage

  • Is green growth happening? An empirical analysis of achieved versus Paris-compliant CO2-GDP decoupling in high-income countries
    J. Vogel & J. Hickel
    Lancet Planet. Health 7, e759 (2023)
    [doi]

  • Limits to economic growth
    T. W. Murphy Jr
    Nat. Phys. 18, 844 (2022) [doi]

  • Lotka's wheel and the long arm of history: How does the distant past determine today's global rate of energy consumption?
    T. J. Garrett, M. R. Grasselli & S. Keen
    Earth Syst. Dynam. 13, 1021 (2022) [doi]

  • Coupling versus decoupling? Challenging evidence over the link between economic growth and resource use
    K. Bithas & P. Kalimeris
    Sustainability 14, 1459 (2022
    ) [doi]

  • Decoupling for ecological sustainability: A categorisation and review of research literature
    T. Vadén, V. Lähde, A. Majava, P. Järvensivu et al.
    Environ. Sci. Policy 112, 236 (2020) [doi]

  • Economic growth and carbon emissions: The road to "Hothouse Earth" is paved with good intentions
    E. Schröder & S. Storm
    Int. J. Political Econ. 49, 153 (2020)
    [doi]

  • Meeting 2030 primary energy and economic growth goals: Mission impossible?
    M. K. Heun & P. E. Brockway
    Appl. Energy 251, 112697 (2019)
    [doi]

  • Is green growth possible?
    J. Hickel & G. Kallis
    New Political Econ. 25, 469 (2019)
    [doi]

  • The contradiction of the sustainable development goals: Growth versus ecology on a finite planet
    J. Hickel
    Sustain. Dev. 27, 873 (2019
    ) [doi]

  • Finance, energy and the decoupling: an empirical study
    Z. Kovaci, M. Spanò, S. L. Piano & A. H. Sorman
    J. Evol. Econ. 28, 565 (2018)
    [doi]

  • Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade
    V. Moreau & F. Vuille
    Appl. Energy 215, 54 (2018)
    [doi]

  • Is decoupling GDP growth from environmental impact possible?
    J. D. Ward, P. C. Sutton, A. D. Werner, R. Costanza et al.
    PLoS ONE 11, e0164733 (2016)
    [doi]

Décroissance

  • Urgent need for post-growth climate mitigation scenarios
    J. Hickel,
    P. Brockway, G. Kallis, L. Keyßer et al.
    Nat. Energy 6, 766 (2021)
    [doi]

  • 1.5°C degrowth scenarios suggest the need for new mitigation pathways
    L. T. Keyßer & M. Lenzen

    Nat. Commun. 12, 2676 (2021)
    [doi]

  • What does degrowth mean? A few points of clarification
    J. Hickel
    Globalizations 18, 1105 (2021) [doi]

  • Feasible alternatives to green growth
    S. D'Alessandro, A. Cieplinski, T. Distefano & K. Dittmer
    Nat. Sustain. 3, 329 (2020)
    [doi]

  • Biodiversity policy beyond economic growth
    I. Otero, K. N. Farrell, S. Pueyo, G. Kallis et al.
    Conserv. Lett. 13, e12713 (2020)
    [doi]

  • Research on degrowth
    G. Kallis, V. Kostakis, S. Lange, B. Muraca et al.
    Annu. Rev. Environ. Resour. 43, 291 (2018) [doi]


Société

Dynamique sociale

  • Anarchy, war, or revolt? Radical perspectives for climate protection, insurgency and civil disobedience in a low-carbon era
    B. K. Sovacool & A. Dunlap
    Energy Res. Soc. Sci. 86, 102416 (2022) [doi]

  • From planetary to societal boundaries: An argument for collectively defined self-limitation
    U. Brand, B. Muraca, E. Pineault, M. Sahakian et al.
    Sustain.: Sci. Pract. Policy 17, 264 (2021) [doi]

  • Social tipping dynamics for stabilizing Earth's climate by 2050
    I. M. Otto, J. F. Donges, R. Cremades, A. Bhowmik et al.
    Proc. Natl. Acad. Sci. 117, 2354 (2020) [doi]

  • Discourses of climate delay
    W. F. Lamb, G. Mattioli, S. Levi, J. Timmons Roberts et al.
    Glob. Sustain. 3, e17 (2020)
    [doi]

  • Inequality and the biosphere
    M. Hamann, K. Berry, T. Chaigneau, T. Curry et al.
    Annu. Rev. Environ. Resour. 43, 61 (2018)
    [doi]

  • The need to respect nature and its limits challenges society and conservation science
    J.-L. Martin, V. Maris & D. S. Simberloff
    Proc. Natl. Acad. Sci. 113, 6105 (2016) [doi]

Capital fossile

  • Fossilised capital: Price and profit in the energy transition
    B. Christophers
    New Political Econ. 27, 146 (2022) [doi]

  • Stranded fossil-fuel assets translate to major losses for investors in advanced economies
    G. Semieniuk, P. B. Holden, J.-F. Mercure, P. Salas et al.
    Nat. Clim. Chang. 12, 532 (2022)
    [doi]

  • Three decades of climate mitigation: Why haven't we bent the global emissions curve?
    I. Stoddard, K. Anderson, S. Capstick, W. Carton et al.
    Annu. Rev. Environ. Resour. 46, 653 (2021)
    [doi]

  • Carbon democracy
    T. Mitchell
    Econ. Soc. 38, 399 (2009)
    [doi]

Marchands de doute

  • Assessing ExxonMobil's global warming projections
    G. Supran, S. Rahmstorf & N. Oreskes
    Science 379, eabk0063 (2023) [doi]

  • Fossil fuel companies' climate communication strategies: Industry messaging on renewables and natural gas
    Y. Si, D. Desai, D. Bozhilova, S. Puffer et al.
    Energy Res. Soc. Sci. 98, 103028 (2023) [doi]

  • Weaponizing economics: Big Oil, economic consultants, and climate policy delay
    B. Franta
    Environ. Politics 31, 555 (2022)
    [doi]

  • Early oil industry disinformation on global warming
    B. Franta
    Environ. Politics 30, 663 (2021)
    [doi]

  • Rhetoric and frame analysis of ExxonMobil's climate change communications
    G. Supran & N. Oreskes
    One Earth 4, 696 (2021) [doi]

  • Early warnings and emerging accountability: Total's response to global warming
    C. Bonneuil, P.-L. Choquet & B. Franta
    Glob. Environ. Change 71, 102386 (2021)
    [doi]

  • How ambitious are oil and gas companies' climate goals?
    S. Dietz, D. Gardiner, V. Jahn & J. Noels
    Science 374, 405 (2021) [doi]

  • Early oil industry knowledge of CO2 and global warming
    B. Franta

    Nat. Clim. Chang. 8, 1024 (2018)
    [doi]

  • Assessing ExxonMobil's climate change communications
    G. Supran & N. Oreskes
    Environ. Res. Lett. 12, 084019 (2017) [doi]

  • Consensus on consensus: A synthesis of consensus estimates on human-caused global warming
    J. Cook, N. Oreskes, P. T. Doran,  W. R. L. Anderegg et al.
    Environ. Res. Lett. 11, 048002 (2016) [doi]

Contrôle et pouvoir

  • The dangers of decoupling: Earth system crisis and the fourth industrial revolution
    M. J. Albert
    Glob. Policy 11, 245 (2020)
    [doi]

  • Big other: Surveillance capitalism and the prospects of an information civilization
    S. Zuboff
    J. Inf. Technol. 30, 75 (2015)
    [doi]

  • The network of global corporate control
    S. Vitali, J. B. Glattfelder & S. Battiston
    PLoS ONE 6, e25995 (2011)
    [doi]


Psychologie

  • Petro-masculinity: Fossil fuels and authoritarian desire
    C. Daggett
    Millenn. J. Int. Stud. 47, 25 (2018) [doi]

  • On the perpetuation of ignorance: System dependence, system justification, and the motivated avoidance of sociopolitical information
    S. Shepherd & A. C. Kay
    J. Pers. Soc. Psychol. 102, 264 (2012) [doi]

  • The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation
    R. Gifford
    Am. Psychol. 66, 290 (2011)
    [doi]

  • Change resistance as the crux of the environmental sustainability problem
    J. Harich
    Syst. Dyn. Rev. 26, 35 (2010)
    [doi]


Classiques

  • Allons-nous continuer la recherche scientifique ?
    A. Grothendieck
    Conférence donnée au CERN en 1972 [audio]
    Écologie & politique 52, 159 (2016) [doi]

  • A political view of CO2
    M. Glantz
    Nature 280, 189 (1979) [doi]

  • Energy and economic myths
    N. Georgescu-Roegen
    South. Econ. J. 41, 347 (1975) [doi]

  • Energy, ecology, and economics
    H. T. Odum
    AMBIO 2, 262 (1973) [doi]

  • More is different
    P. W. Anderson
    Science 177, 393 (1972) [doi]

  • The strategy of ecosystem development
    E. P. Odum
    Science 164, 262 (1969) [doi]

  • On economics as a life science
    H. E. Daly
    J. Political Econ. 76, 392 (1968) [doi]

  • The historical roots of our ecological crisis
    L. T. White Jr.
    Science 155, 1203 (1967) [doi]

  • The economics of the coming spaceship Earth
    K. E. Boulding
    In H. Jarrett (eds.) Environmental Quality in a Growing Economy: Resources for the Future, Johns Hopkins University Press, pp. 3–14 (1966) [web]