Gravitational waves, relativistic celestial mechanics and black hole physics

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

The beginnings of gravitational-wave science

Science with gravitational-wave observations

Detectors

The future of gravitational-wave science

[Broekgaarden, astro-ph.HE/2303.17628]

The future of gravitational-wave science

[LISA Collaboration, astro-ph.CO/2402.07571]

Need for highly accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

Need for highly accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

An example: the event GW151226

[LIGO-Virgo Collaboration, PRL 2016]

General relativistic celestial mechanics

Black hole physics

Outline

1 Universal class of template waveforms

2 First law of compact binary mechanics

3 The shape of interacting black holes

Outline

1 Universal class of template waveforms

2 First law of compact binary mechanics

3 The shape of interacting black holes

Main shortcomings of current waveforms

For 3G detectors we find that the mismatch error for semi-analytical models needs to be reduced by at least three orders of magnitude and for NR waveforms by one order of magnitude.

[Pürrer & Haster, PRR 2020]

Main shortcomings of current waveforms

For 3G detectors we find that the mismatch error for semi-analytical models needs to be reduced by at least three orders of magnitude and for NR waveforms by one order of magnitude.

[Pürrer & Haster, PRR 2020]

Systematic uncertainties in modeling IMRIs

The mass ratio of GW191219_163120's source is inferred to be $q = 0.038^{+0.005}_{-0.004}$, which is extremely challenging for waveform modeling, and thus there may be systematic uncertainties in results for this candidate.

Modeling of higher-order multipole moments is particularly important for inferring the properties of systems with unequal masses, and may impact inference of parameters including the mass ratio, inclination and distance.

[LIGO-Virgo-KAGRA Collaborations, PRX 2023]

Perturbation theory for comparable masses

Restore **discrete symmetry** by $1 \rightleftharpoons 2$: $q \equiv \frac{m_1}{m_2} \rightarrow \nu \equiv \frac{m_1 m_2}{m^2}$

[Le Tiec, IJMPD 2014]

Perturbation theory for comparable masses

[van de Meent & Pfeiffer, PRL 2020]

Comparisons to numerical relativity

Relativistic orbital dynamics

- Periastron advance [Le Tiec et al., PRL 2011; PRD 2013]
- Binding energy [Le Tiec, Buonanno & Barausse, PRL 2012]
- Surface gravity [Zimmerman, Lewis & Pfeiffer, PRL 2016] [Le Tiec & Grandclément, CQG 2018]

Gravitational-wave emission

- Recoil velocity [Nagar, PRD 2013]
- Head-on waveform [Sperhake et al., PRD 2011]
- Inspiral energy flux [Warburton et al., PRL 2021]
- Inspiral waveform [Ramos-Buades *et al.*, PRD 2022] [Islam & Khanna, PRD 2023]

Post-adiabatic gravitational waveforms

[Wardell, Pound, Warburton, Miller, Durkan & Le Tiec, PRL 2023]

Summary and prospects

- For 3G detectors the mismatch error for semi-analytical models needs to be reduced by several orders of magnitude
- IMRIs are chalenging for existing modeling techniques and current templates are not reliable for q ≥ 30
- Post-adiabatic waveforms agree remarkably well with the results from full numerical relativity with $1 \leqslant q \leqslant 10$
- Second-order black hole perturbation theory will be used to model EMRIs, IMRIs and possibly comparable-mass systems
- Prospects in the near future:
 - Add the transition to plunge and merger
 - Inclusion of the black hole and secondary spin
 - Extension to generic eccentric and inclined orbits

Outline

1 Universal class of template waveforms

2 First law of compact binary mechanics

3 The shape of interacting black holes

The black hole uniqueness theorem

• In 4D the only stationary vacuum black hole solution of the Einstein equation is the Kerr solution of mass *M* and spin *S*

"Black holes have no hair." (J. A. Wheeler)

- Black hole event horizon \mathcal{H} characterized by:
 - Angular velocity ω_H
 - Surface gravity κ
 - Surface area A

The laws of black hole mechanics

• Zeroth law of mechanics:

 $\kappa = \text{const.} (\text{on } \mathcal{H})$

• First law of mechanics:

$$\delta M = \omega_H \, \delta S + \frac{\kappa}{8\pi} \, \delta A$$

Second law of mechanics:

 $\delta A \ge 0$

[Hawking 1972; Bardeen, Carter & Hawking 1973]

What is the horizon surface gravity?

What is the horizon surface gravity?

• For an event horizon \mathcal{H} generated by a Killing field k^a :

$$\kappa^2 \equiv \frac{1}{2} \left(\nabla^a k^b \, \nabla_b k_a \right) \Big|_{\mathcal{H}}$$

What is the horizon surface gravity?

• For an event horizon \mathcal{H} generated by a Killing field k^a :

$$\kappa^2 \equiv \frac{1}{2} \left(\nabla^a k^b \, \nabla_b k_a \right) \Big|_{\mathcal{H}}$$

• For a Schwarzschild black hole of mass *M*, this yields

$$\kappa = \frac{1}{4M} = \frac{GM}{R_{\rm S}^2}$$

Beyond stationary, isolated black holes

Why?

- Astrophysical black holes are neither perfectly isolated, nor strictly stationary
- Of special interest are black holes that interact gravitationally with a companion in a compact binary system

Beyond stationary, isolated black holes

Why?

- Astrophysical black holes are neither perfectly isolated, nor strictly stationary
- Of special interest are black holes that interact gravitationally with a companion in a compact binary system

How?

- Slowly evolving or dynamical horizons (quasi-local definitions)
- ✓ Physical setup that guarantees the existence of an isometry
- Perturbative treatment of the problem: large separation, large mass ratio, weak tidal environment

First law for circular-orbit compact binaries

CFC approximation [Friedman *et al.* 2002]

PN approximation [Le Tiec *et al.* 2012]

 $\delta M - \Omega \, \delta J = 4\mu\kappa \, \delta\mu + z \, \delta m$

Perturbation theory [Gralla & Le Tiec 2013]

$$\delta M - \frac{\Omega}{\Omega} \delta L = \sum_{a} \left(z_{a} \, \delta m_{a} + \omega_{a} \, \delta S_{a} \right)$$

ADM Hamiltonian [Blanchet *et al.* 2013]

Helical isometry [Ramond & Le Tiec 2022]

Black hole surface gravity and redshift

[Zimmerman, Lewis & Pfeiffer, PRL 2016]

Averaged redshift for eccentric orbits

• Generic eccentric orbit parameterized by the two requencies

$$\Omega_r = \frac{2\pi}{P} \,, \quad \Omega_\phi = \frac{\Phi}{P}$$

• Time average of redshift $z = d\tau/dt$ over one radial period

$$\langle \mathbf{z} \rangle \equiv \frac{1}{P} \int_0^P z(t) \, \mathrm{d}t = \frac{1}{P} \int_0^T \mathrm{d}\tau = \frac{T}{P}$$

First law of mechanics for eccentric orbits

- Canonical ADM Hamiltonian H(x_a, p_a; m_a) of two point particles with constant masses m_a
- Variation δH + Hamilton's equation + orbital averaging:

$$\delta \mathbf{M} = \Omega_{\phi} \, \delta \mathbf{L} + \Omega_{r} \, \delta \mathbf{l}_{r} + \sum_{\mathbf{a}} \left\langle \mathbf{z}_{\mathbf{a}} \right\rangle \delta m_{\mathbf{a}}$$

• Starting at 4PN order the binary dynamics gets nonlocal in time because of gravitational-wave tails:

$$H_{\text{tail}}^{\text{4PN}}[\mathbf{x}_{a}(t),\mathbf{p}_{a}(t)] = -\frac{GM}{5c^{8}}I_{ij}^{(3)}(t) \Pr_{2r} \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{\tau}I_{ij}^{(3)}(t+\tau)$$

[Le Tiec, PRD 2015; Blanchet & Le Tiec, CQG 2017]

Numerous applications of the first law

- Fix 'ambiguity parameters' in 4PN two-body equations of motion [Jaranowski & Schäfer 2012; Damour et al. 2014; Bernard et al. 2017]
- Inform the 5PN two-body Hamiltonian in a 'tutti-frutti' method [Bini, Damour & Geralico 2019; 2020]
- Calculate Schwarzschild and Kerr ISCO frequency shifts [Le Tiec et al. 2012; Akcay et al. 2012; Isoyama et al. 2014]
- Test cosmic censorship conjecture including GSF effects [Colleoni & Barack 2015; Colleoni *et al.* 2015]
- Calibrate EOB potentials in effective Hamiltonian [Barausse et al. 2012; Akcay & van de Meent 2016; Bini et al. 2016]
- Compare particle redshift to black hole surface gravity [Zimmerman, Lewis & Pfeiffer 2016; Le Tiec & Grandclément 2018]
- Benchmark for calculations of Schwarzschild IBCO frequency shift and gravitational binding energy [Barack *et al.* 2019; Pound *et al.* 2020]

Summary and prospects

- The classical laws of black hole mechanics can be extended to binary systems of compact objects
- Combined with the first law, the redshift $z(\Omega)$ provides crucial information about the binary dynamics:
 - $\circ~$ Gravitational binding energy E and angular momentum J
 - $\circ~$ ISCO frequency Ω_{ISCO} and IBCO frequency Ω_{IBCO}
 - EOB effective potentials A, \overline{D} , Q, ...
 - Horizon surface gravity κ
- Extensions in the near future:
 - Dissipative effects from radiation-reaction
 - Precessing spins and generic bound orbits
 - Finite-size effects from quadrupole moments
 - Unbound orbits and post-Minkowskian gravity

Outline

1 Universal class of template waveforms

2 First law of compact binary mechanics

3 The shape of interacting black holes

Do isolated black holes have hair?

Botromeladesy

Objective: test the black hole no-hair theorem of general relativity

Do tidally-interacting black holes deform?

Black hole tomography by gravitational-wave observations

Objective: measure the black hole tidal Love numbers with LISA

Tidal deformability of Kerr black holes

[Le Tiec & Casals, PRL 2021; Le Tiec, Casals & Franzin, PRD 2021]

Example: Newtonian static quadrupolar tide

[Le Tiec & Casals, PRL 2021; Le Tiec, Casals & Franzin, PRD 2021]

A burst of activity on BH tidal deformability

- Other backgrounds, generic spin-s fields and higher dimensions
 [Hui et al., JCAP 2021; Pereñiguez & Cardoso, PRD 2022; Rodriguez et al., PRD 2023; Charalambous & Ivanov, JHEP 2023; Charalambous, JHEP 2024]
- Dissipative nature of Kerr black hole tidal deformability [Chia, PRD 2021; Goldberger *et al.*, JHEP 2021; Charalambous, JHEP 2021; Prasad Bhatt *et al.*, PRD 2023]
- Hidden symmetry and vanishing black hole Love numbers
 [Charalambous et al., PRL 2021; Hui et al., JCAP 2022; Charalambous et al., JHEP 2022; Achour et al., JHEP 2022; Hui et al., JHEP 2022; Berens et al., JCAP 2023; Katagiri et al., PRD 2023; Rai & Santoni 2024]
- Scattering amplitudes and vanishing black hole Love numbers [Creci et al., PRD 2021; Ivanov & Zhou, PRL 2023; Saketh et al., PRD 2024]
- Effective Field Theory, matching and logarithmic corrections [Ivanov & Zhou, PRD 2023]
- Nonlinearities in the tidal Love numbers of black holes
 [De Luca et al., PRD 2023; Maria Riva et al. 2023; Hadad et al. 2024]

Summary and prospects

- Program of black hole tomography by gravitational-wave observations
- Spinning black holes deform like any other self-gravitating body, despite being particularly "rigid" compact objects
- New black hole test of the Kerr-like nature of the massive compact objects at the center of galaxies?
- Future research directions:
 - Relation between tidal deformability and horizon viscosity
 - Compute Kerr black hole shape tidal Love numbers
 - Explore link between source and field multipoles

Thank you for your attention!

