Coalescing black hole binaries in general relativity & The dark matter problem in astrophysics

Alexandre Le Tiec

Gravitation et Cosmologie (\mathcal{GReCO}) Institut d'Astrophysique de Paris

Sous la direction de Luc Blanchet

PN/SF comparison 0000000

Dark matter vs MOND 000000

Dipolar dark matter 000000

- ① Gravitational wave source modelling
- 2 Post-Newtonian and self-force dynamics of black hole binaries
- ③ Cold dark matter and modified Newtonian dynamics
- ④ Dipolar dark matter and dark energy

 $\begin{array}{c} \mathsf{GW} \text{ source modelling} \\ \circ \circ \circ \circ \end{array}$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

① Gravitational wave source modelling

² Post-Newtonian and self-force dynamics of black hole binaries

³ Cold dark matter and modified Newtonian dynamics

④ Dipolar dark matter and dark energy

PhD Thesis Defence, September 27, 2010

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

What is a gravitational wave?

A gravitational wave is a ripple in the curvature of spacetime, which propagates at the speed of light

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Interferometric detectors of gravitational waves (GW)

Virgo (Cascina, Italy)

High frequency band: 10 Hz $\lesssim f \lesssim 10^3$ Hz

LISA (design)

Low frequency band: $10^{-4} \text{ Hz} \lesssim f \lesssim 10^{-1} \text{ Hz}$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Main sources of GW for Virgo/LIGO and LISA

- Binary neutron stars $(M\sim 1.5M_{\odot})$
- Stellar mass black hole binaries $(M \sim 10 M_{\odot})$
- Supermassive black hole binaries $(M \sim 10^6 M_{\odot})$
- Extreme mass ratio inspirals (EMRIs)

PhD Thesis Defence, September 27, 2010

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 000000

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 000000

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Methods to compute gravitational wave templates The post-Newtonian (PN) formalism

Perturbation parameter

$$\varepsilon_{\rm PN} \sim rac{{v_{12}}^2}{c^2} \sim rac{Gm}{r_{12}c^2} \ll 1$$

Example

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 000000

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Methods to compute gravitational wave templates Black hole perturbation theory and the gravitational self-force

Spacetime metric

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Methods to compute gravitational wave templates Black hole perturbation theory and the gravitational self-force

Spacetime metric

$$g_{\mu\nu} = \bar{g}_{\mu\nu}$$

Perturbation parameter
 $q \equiv \frac{m_1}{m_2} \ll 1$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Methods to compute gravitational wave templates Black hole perturbation theory and the gravitational self-force

Spacetime metric

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

Perturbation parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Methods to compute gravitational wave templates Black hole perturbation theory and the gravitational self-force

Spacetime metric

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

Perturbation parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Methods to compute gravitational wave templates Black hole perturbation theory and the gravitational self-force

Spacetime metric

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

Perturbation parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$

Self-force (SF) effect

$$\overline{u}^{\mu} = \mathbf{f}^{\mu} = \mathcal{O}(q)$$

PN/SF comparison 0000000 Dark matter vs MOND 000000 Dipolar dark matter 000000

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

PN/SF comparison 0000000 Dark matter vs MOND 000000 Dipolar dark matter 000000

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

${f {f D}}$ Gravitational wave source modelling

2 Post-Newtonian and self-force dynamics of black hole binaries

③ Cold dark matter and modified Newtonian dynamics

④ Dipolar dark matter and dark energy

PhD Thesis Defence, September 27, 2010

PN/SF comparison •000000 Dark matter vs MOND 000000

Dipolar dark matter

How can a meaningful comparison be made?

- Conservative part of the dynamics only
- For circular orbits, the geometry admits an helical Killing vector k^α such that

 $\mathbf{k}^{lpha} = \left(\partial_t\right)^{lpha} + \Omega \left(\partial_{arphi}
ight)^{lpha}$ (asymptotically)

• Four-velocity u^{α} of the particle necessarily tangent to the helical Killing vector:

$$u^{lpha} = u^T k_1^{c}$$

 Relation u^T(Ω) well defined in both PN and SF frameworks, and gauge invariant

PN/SF comparison 000000 Dark matter vs MOND 000000

Dipolar dark matter

Post-Newtonian calculation of the "redshift observable"

$$u^{t} = \left(-\frac{g_{\alpha\beta}(\mathbf{y}_{1})}{r_{1}}\frac{\mathbf{v}_{1}^{\alpha}\mathbf{v}_{1}^{\beta}}{c^{2}}\right)^{-1/2}$$

regularized metric at \mathbf{y}_{1}

- Calculation of $g_{\alpha\beta}(\mathbf{x})$ at the location $\mathbf{x} = \mathbf{y}_1$ at 3PN order
- The metric is singular at the location of the particle
- It is regularized by means of dimensional regularization
- Computation of the 4PN and 5PN logarithmic contributions arising from gravitational wave tails

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Post-Newtonian result for the SF effect on $u^t(\Omega)$

[Blanchet, Detweiler, Le Tiec & Whiting 10 (a,b)]

• The extreme mass ratio limit of u^t for circular orbits reads

$$u^{t} = u^{t}_{\mathsf{Schw}} \underbrace{-q \, u^{t}_{\mathsf{SF}}}_{\mathsf{SF effect}} + q^{2} u^{t}_{\mathsf{PSF}} + \mathcal{O}(q^{3})$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Post-Newtonian result for the SF effect on $u^t(\Omega)$

[Blanchet, Detweiler, Le Tiec & Whiting 10 (a,b)]

• The extreme mass ratio limit of u^t for circular orbits reads

$$u^{t} = u^{t}_{\mathsf{Schw}} \underbrace{- q \, u^{t}_{\mathsf{SF}}}_{\mathsf{SF effect}} + q^{2} u^{t}_{\mathsf{PSF}} + \mathcal{O}(q^{3})$$

• Result expressed as a power series in $y \equiv \left(\frac{Gm_2\Omega}{c^3}\right)^{2/3} \sim \left(\frac{v}{c}\right)^2$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Post-Newtonian result for the SF effect on $u^t(\Omega)$

[Blanchet, Detweiler, Le Tiec & Whiting 10 (a,b)]

• The extreme mass ratio limit of u^t for circular orbits reads

$$u^{t} = u^{t}_{\mathsf{Schw}} \underbrace{- q \, u^{t}_{\mathsf{SF}}}_{\mathsf{SF effect}} + q^{2} u^{t}_{\mathsf{PSF}} + \mathcal{O}(q^{3})$$

- Result expressed as a power series in $y \equiv \left(\frac{Gm_2\Omega}{c^3}\right)^{2/3} \sim \left(\frac{v}{c}\right)^2$
- Combining the results of our PN calculations, the SF effect is

$$u_{\mathsf{SF}}^{t}(y) = y + 2y^{2} + 5y^{3} + \underbrace{\left(\frac{121}{3} - \frac{41}{32}\pi^{2}\right)y^{4}}_{4PN \log} + \left(a_{4} + \frac{64}{5}\ln y\right)y^{5} + \left(a_{5} - \frac{956}{105}\ln y\right)y^{6} + o(y^{6})$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

High-precision comparison of the 3PN coefficient

• We fit the result of the SF calculation by a PN series

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} a_n y^{n+1} + \ln y \sum_{n \ge 4} b_n y^{n+1}$$

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 000000

High-precision comparison of the 3PN coefficient

• We fit the result of the SF calculation by a PN series

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} \frac{a_n}{y^{n+1}} + \ln y \sum_{n \ge 4} \frac{b_n}{y^{n+1}} y^{n+1}$$

The known values of the coeff. {a₀, a₁, a₂} up to 2PN are used, as well as the 4PN and 5PN logarithmic coeff. {b₄, b₅}

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 000000

High-precision comparison of the 3PN coefficient

• We fit the result of the SF calculation by a PN series

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} \frac{a_n}{y^{n+1}} + \ln y \sum_{n \ge 4} \frac{b_n}{y^{n+1}} y^{n+1}$$

- The known values of the coeff. {a₀, a₁, a₂} up to 2PN are used, as well as the 4PN and 5PN logarithmic coeff. {b₄, b₅}
- The fit of the numerical SF data yields for the 3PN coefficient

 $a_3^{\sf SF} = 27.6879034 \, \pm \, 0.0000004$

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

High-precision comparison of the 3PN coefficient

• We fit the result of the SF calculation by a PN series

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} a_n y^{n+1} + \ln y \sum_{n \ge 4} b_n y^{n+1}$$

- The known values of the coeff. {a₀, a₁, a₂} up to 2PN are used, as well as the 4PN and 5PN logarithmic coeff. {b₄, b₅}
- The fit of the numerical SF data yields for the 3PN coefficient

 $a_3^{\sf SF} = 27.6879034 \, \pm \, 0.0000004$

• The 3PN calculation with dimensional regularization gives

$$a_3 = \frac{121}{3} - \frac{41}{32}\pi^2 = 27.6879026\cdots$$

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

High-precision comparison of the 3PN coefficient

• We fit the result of the SF calculation by a PN series

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} \frac{a_n}{y^{n+1}} + \ln y \sum_{n \ge 4} \frac{b_n}{y^{n+1}} y^{n+1}$$

- The known values of the coeff. {a₀, a₁, a₂} up to 2PN are used, as well as the 4PN and 5PN logarithmic coeff. {b₄, b₅}
- The fit of the numerical SF data yields for the 3PN coefficient

 $a_3^{\sf SF} = 27.6879034 \pm 0.0000004$

• The 3PN calculation with dimensional regularization gives

$$a_3 = \frac{121}{3} - \frac{41}{32}\pi^2 = 27.6879026\cdots$$

• The two calculations are therefore in agreement at the 2σ level with 9 significant digits

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 000000

High-order PN fit of the gravitational SF calculation

• Again we fit the result of the perturbative SF calculation by a PN series of the type

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} a_n y^{n+1} + \ln y \sum_{n \ge 4} b_n y^{n+1}$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

High-order PN fit of the gravitational SF calculation

• Again we fit the result of the perturbative SF calculation by a PN series of the type

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} a_n y^{n+1} + \ln y \sum_{n \ge 4} b_n y^{n+1}$$

• But this time we also use the known value of the 3PN coefficient *a*₃.

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

High-order PN fit of the gravitational SF calculation

• Again we fit the result of the perturbative SF calculation by a PN series of the type

$$u_{\mathsf{SF}}^t(y) = \sum_{n \ge 0} a_n y^{n+1} + \ln y \sum_{n \ge 4} b_n y^{n+1}$$

• But this time we also use the known value of the 3PN coefficient *a*₃. Our best fit yields:

PN order	coeff.	value
4	a ₄	+114.34747(5)
5	a 5	+245.53(1)
6	<i>a</i> 6	+695(2)
6	b 6	-339.3(5)
7	a ₇	+5837(16)

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Comparison of the PN and SF calculations

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Summary and prospects

Successful comparison of the PN and SF formalisms:

- Impressive agreement between analytically determined PN coefficients and results from fit of numerical SF (e.g. 3PN)
- Extraction of previously unknown high-order PN coefficients (up to 7PN) from accurate SF data
- Confirms the adequacy of the regularization schemes used in both PN and SF approaches
PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

Summary and prospects

Successful comparison of the PN and SF formalisms:

- Impressive agreement between analytically determined PN coefficients and results from fit of numerical SF (e.g. 3PN)
- Extraction of previously unknown high-order PN coefficients (up to 7PN) from accurate SF data
- Confirms the adequacy of the regularization schemes used in both PN and SF approaches

More comparisons to come in the future:

• Eccentric orbits in Schwarzschild

[Barack, Le Tiec & Sago, in progress]

- Circular/eccentric (equatorial) orbits in Kerr
- Post-SF terms in the energy flux (2nd order BH perturbations)

PN/SF comparison

Dark matter vs MOND

Dipolar dark matter 000000

① Gravitational wave source modelling

² Post-Newtonian and self-force dynamics of black hole binaries

3 Cold dark matter and modified Newtonian dynamics

④ Dipolar dark matter and dark energy

PN/SF comparison 0000000 Dark matter vs MOND •00000 Dipolar dark matter 000000

The concordance model of cosmology or ACDM scenario

- Cosmic microwave background anisotropies
- Hubble diagram of supernovæ
- Baryonic acoustic oscillations
- Big Bang nucleosynthesis
- Weak and strong lensing
- Growth of structures
- Mass discrepancy
- . . .

PN/SF comparison 0000000 Dark matter vs MOND 00000 Dipolar dark matter

Galaxies are dominated by non-baryonic dark matter

• For a circular orbit in Newtonian gravity

$$V_{\rm rot}(r) = \sqrt{\frac{GM(r)}{r}}$$

• The observation that $V_{\rm rot} \simeq {\rm cst.}$ requires

$$M_{
m halo}(r) \propto r$$
 $ho_{
m halo}(r) \propto rac{1}{r^2}$

Figure: A spiral galaxy rotation curve [Bottema 97]

Dark matter vs MOND 000000 Dipolar dark matter 000000

The pros and cons of cold dark matter (CDM)

✓ Independant motivation from particle physics [Bertone et al. 04]:

- Neutralino in MSSM
- Kaluza-Klein states
- . . .

The pros and cons of cold dark matter (CDM)

- ✓ Independant motivation from particle physics [Bertone et al. 04]:
 - Neutralino in MSSM
 - Kaluza-Klein states
 - . . .

✓ Successfully applied at cosmological scales:

- Accounts for the observed mass discrepancies
- Triggers the formation of large-scale structures
- . . .

The pros and cons of cold dark matter (CDM)

- ✓ Independant motivation from particle physics [Bertone et al. 04]:
 - Neutralino in MSSM
 - Kaluza-Klein states
 - ...
- ✓ Successfully applied at cosmological scales:
 - Accounts for the observed mass discrepancies
 - Triggers the formation of large-scale structures
 - ...
- **×** Faces numerous challenges at galactic scales:

[Peebles & Nusser 10, Kroupa et al. 10]

- Core/cusp problem in central regions of galaxies
- Problem of missing satellites of large galaxies
- Galactic phenomenology, e.g. [McGaugh & Sanders 04]
 - Baryonic Tully-Fisher relation
 - Faber-Jackson relation
 - Milgrom's law

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

MOdified Newtonian Dynamics (MOND) [Milgrom 83]

- An alternative to the dark matter hypothesis
- No dark matter but violation of the fundamental law of gravity
- Designed to account for the phenomenology of the flat rotation curves of galaxies and the Tully-Fisher relation
- Modified Poisson equation $\boldsymbol{\nabla} \cdot \left[\boldsymbol{\mu} \left(\frac{g}{a_0} \right) \mathbf{g} \right] = -4\pi G \rho_{\mathsf{b}}$
- MOND acceleration scale

 $a_0\simeq 1.2\times 10^{-10}~\textrm{m/s}^2$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Many galactic rotation curves are fitted by MOND

Figure: Rotation curves of Ursa Major galaxies [Sanders & Verheijen 98]

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

The pros and cons of MOND

- ✓ Accounts for numerous observations at the galactic scale: [McGaugh & Sanders 04]
 - Baryonic Tully-Fisher relation
 - One-parameter fit of galactic rotation curves
 - Prediction of large mass discrepancy in dwarf spheroidals
 - Bars in galaxies and galactic mergers [Combes & Tiret 10]
 - . . .

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

The pros and cons of MOND

- Accounts for numerous observations at the galactic scale: [McGaugh & Sanders 04]
 - Baryonic Tully-Fisher relation
 - One-parameter fit of galactic rotation curves
 - Prediction of large mass discrepancy in dwarf spheroidals
 - Bars in galaxies and galactic mergers [Combes & Tiret 10]

• ...

- ✓ Relativistic extensions have been proposed:
 - TeVeS [Bekenstein 04; Sanders 05]
 - BIMOND [Milgrom 10]

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

The pros and cons of MOND

- Accounts for numerous observations at the galactic scale: [McGaugh & Sanders 04]
 - Baryonic Tully-Fisher relation
 - One-parameter fit of galactic rotation curves
 - Prediction of large mass discrepancy in dwarf spheroidals
 - Bars in galaxies and galactic mergers [Combes & Tiret 10]

• . . .

- ✓ Relativistic extensions have been proposed:
 - TeVeS [Bekenstein 04; Sanders 05]
 - BIMOND [Milgrom 10]
- Postulates an *ad hoc* modification of the fundamental law of gravity (or inertia)

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

The pros and cons of MOND

- Accounts for numerous observations at the galactic scale: [McGaugh & Sanders 04]
 - Baryonic Tully-Fisher relation
 - One-parameter fit of galactic rotation curves
 - Prediction of large mass discrepancy in dwarf spheroidals
 - Bars in galaxies and galactic mergers [Combes & Tiret 10]
 - . . .
- ✓ Relativistic extensions have been proposed:
 - TeVeS [Bekenstein 04; Sanders 05]
 - BIMOND [Milgrom 10]
- Postulates an *ad hoc* modification of the fundamental law of gravity (or inertia)
- Remaining mass discrepancy at the scale of galaxy clusters [Gerbal et al. 92; Pointecouteau & Silk 08]

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

① Gravitational wave source modelling

² Post-Newtonian and self-force dynamics of black hole binaries

③ Cold dark matter and modified Newtonian dynamics

④ Dipolar dark matter and dark energy

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter •00000

MOND as gravitational polarization [Blanchet 07]

Maxwell-Gauss equation in dielectric media

$$\boldsymbol{\nabla} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \left(\sigma_{\text{free}} \underbrace{-\boldsymbol{\nabla} \cdot \mathbf{P}}_{\text{polarized}} \right) \quad \underset{\mathbf{P} \propto \mathbf{E}}{\Longleftrightarrow} \quad \boldsymbol{\nabla} \cdot \left[\varepsilon_{\text{r}} \left(E \right) \mathbf{E} \right] = \frac{1}{\varepsilon_0} \sigma_{\text{free}}$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter •00000

MOND as gravitational polarization [Blanchet 07]

Maxwell-Gauss equation in dielectric media

$$\boldsymbol{\nabla} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \left(\sigma_{\text{free}} \underbrace{-\boldsymbol{\nabla} \cdot \mathbf{P}}_{\text{polarized}} \right) \quad \Longleftrightarrow_{\mathbf{P} \propto \mathbf{E}} \quad \boldsymbol{\nabla} \cdot \left[\varepsilon_r \left(E \right) \mathbf{E} \right] = \frac{1}{\varepsilon_0} \sigma_{\text{free}}$$

Poisson and MOND equations

$$\boldsymbol{\nabla} \cdot \mathbf{g} = -4\pi G \left(\rho_{\mathrm{b}} \underbrace{-\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}}_{\substack{\text{polarized} \\ \text{masses}}} \right) \quad \Longleftrightarrow \quad \boldsymbol{\nabla} \cdot \left[\mu(g) \, \mathbf{g} \right] = -4\pi G \, \rho_{\mathrm{b}}$$

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter •00000

MOND as gravitational polarization [Blanchet 07]

Maxwell-Gauss equation in dielectric media

$$\boldsymbol{\nabla} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \left(\sigma_{\text{free}} \underbrace{-\boldsymbol{\nabla} \cdot \mathbf{P}}_{\text{polarized}} \right) \quad \stackrel{}{\underset{\text{P} \propto \mathbf{E}}{\Longrightarrow}} \quad \boldsymbol{\nabla} \cdot \left[\varepsilon_r \left(E \right) \mathbf{E} \right] = \frac{1}{\varepsilon_0} \sigma_{\text{free}}$$

Poisson and MOND equations

$$\boldsymbol{\nabla} \cdot \mathbf{g} = -4\pi G \left(\rho_{\mathsf{b}} \underbrace{-\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}}_{\substack{\mathsf{polarized} \\ \mathsf{masses}}} \right) \quad \Longleftrightarrow \quad \boldsymbol{\nabla} \cdot \left[\mu(g) \, \mathbf{g} \right] = -4\pi G \, \rho_{\mathsf{b}}$$

• Build a relativistic **modified matter** model which recovers the phenomenology of MOND in the non-relativistic limit *via* the physical mechanism of gravitational polarization

PN/SF comparison

Dark matter vs MOND

Dipolar dark matter 00000

Lagrangian of the dipolar fluid

[Blanchet & Le Tiec 08; 09]

$$L = -\sigma + J_{\mu} \dot{\xi^{\mu}} - \mathcal{W}(\Pi_{\perp})$$

- Conserved current $J^{\mu} = \sigma u^{\mu}$
- Dipole moment variable ξ^{μ}
- Potential *W*, function of the polarization field Π_⊥ = σξ_⊥

N/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 00000

Link between dark energy and MOND

In the weak-field regime $g \ll a_0 \Leftrightarrow \Pi_{\perp} \ll a_0$

$$\mathcal{W}(\mathsf{\Pi}_{\perp}) = rac{\mathsf{\Lambda}}{8\pi} + 2\pi\,\mathsf{\Pi}_{\perp}^2 + rac{16\pi^2}{3\mathsf{a}_0}\,\mathsf{\Pi}_{\perp}^3 + \mathcal{O}(\mathsf{\Pi}_{\perp}^4)$$

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 00000

Link between dark energy and MOND

In the weak-field regime $g \ll a_0 \Leftrightarrow \Pi_{\perp} \ll a_0$

$$\mathcal{W}(\Pi_{\perp}) = rac{\mathsf{\Lambda}}{8\pi} + 2\pi \,\Pi_{\perp}^2 + rac{16\pi^2}{3a_0} \,\Pi_{\perp}^3 + \mathcal{O}(\Pi_{\perp}^4)$$

• Dark energy as minimum of the potential when $\Pi_{\perp}=0$

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 00000

Link between dark energy and MOND

In the weak-field regime $g \ll a_0 \Leftrightarrow \Pi_{\perp} \ll a_0$

$$\mathcal{W}(\Pi_{\perp}) = rac{\Lambda}{8\pi} + 2\pi \,\Pi_{\perp}^2 + rac{16\pi^2}{3a_0} \,\Pi_{\perp}^3 + \mathcal{O}(\Pi_{\perp}^4)$$

- Dark energy as minimum of the potential when $\Pi_{\perp}=0$
- Phenomenology of MOND in the non-relativistic limit

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter 00000

Link between dark energy and MOND

In the weak-field regime $g \ll a_0 \Leftrightarrow \Pi_{\perp} \ll a_0$

$$\mathcal{W}(\Pi_{\perp}) = rac{\Lambda}{8\pi} + 2\pi \, \Pi_{\perp}^2 + rac{16\pi^2}{3a_0} \, \Pi_{\perp}^3 + \mathcal{O}(\Pi_{\perp}^4)$$

- Dark energy as minimum of the potential when $\Pi_{\perp}=0$
- Phenomenology of MOND in the non-relativistic limit

"Cosmic coincidence" that
$$\Lambda \sim a_0^2$$
 comes out naturally

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering ACDM at cosmological scales

• Effective variables

$$\widetilde{u}^{\mu} = u^{\mu} + \mathscr{L}_{\xi_{\perp}} u^{\mu}$$
 $ho = \sigma -
abla_{\lambda} \Pi^{\lambda}_{\perp}$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Recovering ΛCDM at cosmological scales

• Effective variables

$$\widetilde{u}^{\mu} = u^{\mu} + \mathscr{L}_{\xi_{\perp}} u^{\mu}$$
 $ho = \sigma -
abla_{\lambda} \Pi^{\lambda}_{\perp}$

Stress-energy tensor

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering ACDM at cosmological scales

Effective variables

$$\widetilde{u}^{\mu} = u^{\mu} + \mathscr{L}_{\xi_{\perp}} u^{\mu}$$
 $ho = \sigma -
abla_{\lambda} \Pi^{\lambda}_{\perp}$

Stress-energy tensor

 The dipolar DM fluid is undistinguishable from standard CDM at the level of 1st order cosmological perturbations

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering ΛCDM at cosmological scales

Effective variables

$$\widetilde{u}^{\mu} = u^{\mu} + \mathscr{L}_{\xi_{\perp}} u^{\mu}$$
 $ho = \sigma -
abla_{\lambda} \Pi^{\lambda}_{\perp}$

Stress-energy tensor

- The dipolar DM fluid is undistinguishable from standard CDM at the level of 1st order cosmological perturbations
- Adjusting $(\bar{\sigma}, \Lambda)$ so that $(\Omega_{dm} \simeq 0.23, \Omega_{de} \simeq 0.73)$, the model predicts the same spectrum of CMB temperature fluctuations

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering MOND at galactic scales

• Poisson equation in a galaxy

$$\boldsymbol{\nabla} \cdot \mathbf{g} = -4\pi G \left(\rho_{\mathsf{b}} + \underbrace{\boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_{\perp}}_{\text{mass density } \rho_{\mathsf{dm}}} \right)$$

N/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering MOND at galactic scales

• Poisson equation in a galaxy

$$\boldsymbol{\nabla} \cdot \mathbf{g} = -4\pi G \left(\rho_{\mathsf{b}} + \underbrace{\boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_{\perp}}_{\mathbf{i}} \right)$$

mass density ρ_{dm}

• Weak Clustering Hypothesis $(\mathbf{v} \simeq \mathbf{0}, \sigma \ll \rho_{b})$ implies

$$\mathbf{\Pi}_{\perp} = -rac{\chi(g)}{4\pi G}\,\mathbf{g}$$

N/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering MOND at galactic scales

• Poisson equation in a galaxy

$$\boldsymbol{\nabla} \cdot \mathbf{g} = -4\pi G \left(\rho_{\mathsf{b}} + \underbrace{\boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_{\perp}}_{\text{maximum duration}} \right)$$

mass density $ho_{\rm dm}$

• Weak Clustering Hypothesis ($\mathbf{v} \simeq \mathbf{0}, \sigma \ll \rho_{b}$) implies

$$\mathbf{\Pi}_{\perp} = -rac{\chi(g)}{4\pi G}\,\mathbf{g}$$

• The dipolar DM then benefits from the various successes of the phenomenology of MOND at galactic scales

N/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Recovering MOND at galactic scales

• Poisson equation in a galaxy

$$\boldsymbol{\nabla} \cdot \mathbf{g} = -4\pi G \left(\rho_{\mathsf{b}} + \underbrace{\boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_{\perp}}_{\text{maximum duration}} \right)$$

mass density $ho_{\rm dm}$

• Weak Clustering Hypothesis ($\mathbf{v} \simeq \mathbf{0}, \sigma \ll \rho_{b}$) implies

$$oldsymbol{\Pi}_{\perp} = -rac{\chi(g)}{4\pi\,G}\,oldsymbol{g}$$

- The dipolar DM then benefits from the various successes of the phenomenology of MOND at galactic scales
- It provides a simple explanation for this phenomenology through the physical mechanism of polarization

PN/SF comparison

Dark matter vs MOND 000000 Dipolar dark matter

Summary and prospects

This phenomenological model of dipolar dark matter:

- Is based on a simple and physically motivated matter Lagrangian in standard general relativity
- Is equivalent to ACDM at cosmological scales
- Recovers the phenomenology of MOND at galactic scales via the mechanism of gravitational polarization (modulo WCH)
- "Cosmic coincidence" that $\Lambda \sim a_0^2$ is a natural outcome

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Summary and prospects

This phenomenological model of dipolar dark matter:

- Is based on a simple and physically motivated matter Lagrangian in standard general relativity
- Is equivalent to ACDM at cosmological scales
- Recovers the phenomenology of MOND at galactic scales via the mechanism of gravitational polarization (modulo WCH)
- "Cosmic coincidence" that $\Lambda \sim a_0^2$ is a natural outcome

Further connections with observations:

- Non-gaussianities in the CMB temperature anisotropies [Blanchet, Langlois, Le Tiec & Marsat, in progress]
- Non-linear growth of density perturbations using numerical simulations (test the WCH)
- Stochastic background of gravitational radiation

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

EXTRA SLIDES

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter 000000

PN equations of motion for compact binaries

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Dimensional regularization: a simple example

• Time component of the Newtonian metric in *d* = 3 space dimensions

$$g_{00}(\mathbf{x}) = -1 + \frac{2Gm_1}{c^2r_1} + \frac{2Gm_2}{c^2r_2} + \cdots$$

- Not defined at the location \mathbf{y}_1 in the limit $\mathbf{r}_1 \to \mathbf{0}$
- Time component of the metric in *d* space dimensions

$$g_{00}^{(d)}(\mathbf{x}) = -1 + \frac{2G^{(d)}m_1}{c^2r_1^{d-2}} + \frac{2G^{(d)}m_2}{c^2r_2^{d-2}} + \cdots$$

- Analytic continuation in the space dimension: $d \in \mathbb{C}$
- Choose $\mathcal{R}(d) < 2$ such that $g_{00}^{(d)}$ is defined in the limit $r_1
 ightarrow 0$
- Relying on the uniqueness of analytic continuation, the 3-dimensional result is

$$g_{00}(\mathbf{y}_1) = \mathop{\mathrm{AC}}_{d\to 3} \Bigl[\lim_{\mathbf{x}\to\mathbf{y}_1} g_{00}^{(d)}(\mathbf{x}) \Bigr] = -1 + \frac{2Gm_2}{c^2 r_{12}} + \cdots$$

PN/SF comparison

Dark matter vs MOND 000000

Dipolar dark matter

Hereditary contribution from gravitational wave tails

 Gravitational radiation is scattered by the background curvature generated by the mass *M* of the source

 Starting at 4N order, the near-zone metric depends on the entire past "history" of the source [Blanchet & Damour 88]

$$\delta g_{00}^{\text{tail}}(\mathbf{x},t) = -\frac{8G^2M}{5c^{10}}x^a x^b \int_{-\infty}^t \mathrm{d}t' \, M_{ab}^{(7)}(t') \ln\left(\frac{c(t-t')}{2r}\right)$$
elling PN/SF comparison 0000000 Dark matter vs MOND 000000 Dipolar dark matter

Recoil as computed by numerical relativity (NR)

Figure: Numerical simulation ($\eta = 0.19$) [González *et al.* 07]

- Previous analytical estimate agrees with NR up to merger [Blanchet, Qusailah & Will 05]
- Does the "antikick" come from the ringdown phase?

PhD Thesis Defence, September 27, 2010

GW source modelling

PN/SF comparison 0000000 Dark matter vs MOND 000000

Dipolar dark matter

Recoil velocity of coalescing black hole binaries

PhD Thesis Defence, September 27, 2010