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Einstein’s theory of General Relativity

Gop =8 T,p

General relativity is the theory of space, time and
gravitation formulated by Albert Einstein in 1915



Newtonian time

From space and time to spacetime
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From flat spacetime to curved spacetime
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The road to General Relativity
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General Relativity in a nutshell

Einstein field equation

8rG
Gab + Agab = 7 ab

Matter tells spacetime how to curve

2

Local conservation law

VéT =0

Spacetime tells matter how to move

timelike geodesic

null geodesic
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The realm
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What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of
spacetime that propagates at the vacuum speed of light

gravitational wave background curvature
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Key prediction of Einstein's general theory of relativity



What is a gravitational wave ?




Electromagnetic vs gravitational waves

Electromagnetic waves Gravitational waves

Origin electromagnetic field spacetime curvature
Nature waves in spacetime waves of spacetime
Sources accelerated charges accelerated masses
Wavelength < size of source 2 size of source
Structure dipolar quadrupolar
Coherence low high

Interaction strong weak

Detection power amplitude

Analogy vision audition

Complementary sources of information about the Universe



The gravitational-wave spectrum

Quantum fluctuations in early universe
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Gravitational Wave Amplitude
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Promising sources of gravitational waves
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Need for accurate template waveforms
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If the expected signal is known in advance then n(t) can be filtered
and h(t) recovered by matched filtering — template waveforms



Need for accurate template waveforms
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An example: the event GW151226

Hanford

Livingston

0009 o0
owowo

Strain (107%%)

sV

" |<\|PJI‘ i
it hmw} 1

wwvmwwmwwmwmmu .m'h

=
o

Accumulated
SNR,

SNR

=
ONPBOOWOONSOO

o 512
N

L 256
>

9128
4
2

Freque
(=2

w

[PRL 116 (2016) 241103]

Time (s)

Time (s)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

ON DO
ONB~O
Normalized Energy



Effect of a traveling gravitational wave

h(t)

0 VT T 7T T

A traveling GW induces a variation in length §L ~ %h L



Ground-based interferometric detectors




Optical design of the LIGO interferometers

[Rev. Mod. Phys. 6 (2014) 121]
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[PRL 116 (2016) 061102]
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[PRL 116 (2016) 061102] Two black holes merged
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Why is it such a big deal?

|8 Selected for a Viewpoint in Physics week ending
PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRIJARYZ(!16

s

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott er al.”
(LIGO Scientific C ion and Virgo C
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10~2!. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.16. The source lies at a luminosity distance of 41071 Mpc corresponding to a redshift z = 0.09700;.
In the source frame, the initial black hole masses are 363 M, and 29*#M,, and the final black hole m
()2* Mg, with 3.0703M o, c? radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations the exis f binary stell ss black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

® First direct detection of GW from the cosmos
® Most robust proof of the existence of black holes
® Discovery of the first binary black hole system

® First test of GR in the strong-field regime
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Consistency test for final mass and spin
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Constraining post-Newtonian parameters
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Constraining post-Newtonian parameters
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Masses in the Stellar Graveyard
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Masses in the Stellar Graveyard

in Solar Masses
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Gamma rays, 50 to 300 keV GRB 170817A
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[ApJ 848 (2017) L12] A binary neutron star merger
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[ApJ 848 (2017) L12] Multi-messenger astronomy
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Why is it such a big deal?
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First observation of a binary neutron star merger
Supports the theory of r-process nucleosynthesis
Neutron star mergers <> short y-ray bursts

Measure of Hubble constant Hy = 70 £ 10 km/s/Mpc
Constraint on nuclear matter equation of state

Strong bound on |¢g/c — 1]
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Independent measure of Hubble's constant
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Falsifying many scalar-tensor theories

cg=c cg #
f General Relativity quartic/quintic Galileons
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= Kinetic Gravity Braiding [46] Gu¢'¢” [47], Gauss-Bonnet
i
= Derivative Conformal \‘ [18] quartic/quintic GLPV [19]
B Disformal Tuning 1» DHOST [20] [48] with A; # 0
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[PRL 119 (2017) 251304]
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Tidal deformability of neutron stars
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Mass, radius and equation of state

0.5

[LIGO-P1800115 (2018)]
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An upcoming network of GW observatories

® Upgrade to Advanced LIGO/Virgo + KAGRA in Japan

® Second generation: sensitivity x10 = event rate x103



Roadmap for advanced GW detectors

[Living Rev. Relativity 19 (2016)]
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LISA: a gravitational antenna in space

The LISA mission proposal was selected by ESA in 2017 for L3
slot, with a launch planned for 2034 [http://www.lisamission.org]



Characteristic Strain

LISA sources of gravitational waves
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Multi-band gravitational wave astronomy
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Geodesy
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How do massive black holes form?

220
200
{180
160
140
2
1205
{1005
80




Additional Material



Indirect evidence for the existence of GW
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Binary pulsar PSR B1913+16 Year
[Hulse & Taylor, ApJ 1975] [Weisberg & Huang, ApJ 2016]

60 |- \7

[T T A A I AP IR SRR A
1975 1980 1985 1990 1995 2000 2005 2010

Orbital decay due to GW emission confirmed at the 0.16% level



Indirect evidence for the existence of GW
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Orbital decay due to GW emission confirmed at the 0.16% level



Indirect evidence for the existence of GW

Double pulsar PSR J0737-3039
[Burgay et al., Nature 2003]

Orbital decay due to GW emissio

Mess B (Mg,,)
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[Kramer & Wex, CQG 2009]

n confirmed at the 0.1% level



