Gravitational waves: from theory to observations

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

Outline

1 General relativity

2 Gravitational waves

3 Gravitational-wave science

4 Gravitational-wave astronomy

Outline

1 General relativity

② Gravitational waves

Gravitational-wave science

4 Gravitational-wave astronomy

Einstein's theory of General Relativity

General relativity is the theory of **space**, **time** and **gravitation** formulated by Albert Einstein in 1915

From space and time to spacetime

From flat spacetime to curved spacetime

Special relativity (1905)

General relativity (1915)

The road to General Relativity

General Relativity in a nutshell

Einstein field equation

$$G_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4} T_{ab}$$

Matter tells spacetime how to curve

₩

Local conservation law

$$\nabla^a T_{ab} = 0$$

Spacetime tells matter how to move

The realm of General Relativity

$$Compactness \equiv \frac{G}{c^2} \frac{M}{R}$$

System	Compactness					
Proton	$\sim 10^{-39}$					
Earth	$\sim 10^{-9}$					
Sun	$\sim 10^{-6}$					
White dwarf	$\sim 10^{-3}$					
Neutron star	~ 0.2					
Black hole	~ 0.5					
Universe	~ 0.5					

Outline

1 General relativity

2 Gravitational waves

Gravitational-wave science

4 Gravitational-wave astronomy

What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of spacetime that propagates at the vacuum speed of light

Key prediction of Einstein's general theory of relativity

What is a gravitational wave ?

(Credit: E. Gourgoulhon)

Electromagnetic vs gravitational waves

Electromagnetic waves Gravitational waves

Origin	electromagnetic field			
Nature	waves in spacetime			
Sources	accelerated charges			
Wavelength	\ll size of source			
Structure	dipolar			
Coherence	low			
Interaction	strong			
Detection	power			
Analogy	vision			

spacetime curvature waves of spacetime accelerated masses \gtrsim size of source quadrupolar high weak amplitude audition

Complementary sources of information about the Universe

The gravitational-wave spectrum

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- ✓ Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Promising sources of gravitational waves

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

An example: the event GW151226

[PRL 116 (2016) 241103]

Effect of a traveling gravitational wave

A traveling GW induces a variation in length $\delta L \sim \frac{1}{2} h \, L$

Ground-based interferometric detectors

Optical design of the LIGO interferometers

[Rev. Mod. Phys. 6 (2014) 121]

Outline

1 General relativity

② Gravitational waves

3 Gravitational-wave science

4 Gravitational-wave astronomy

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1 Tech

LIGO-VIRGO DATA: HTTPS://DOI.ORG/10.7935/82H3-HH23

EINSTEIN'S THEORY

[PRL 116 (2016) 061102]

The event GW150914

Two black holes merged

[PRL 116 (2016) 061102]

Why is it such a big deal?

PRL 116, 061102 (2016)

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Ś

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational–Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate stimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1e. The source lies at a luminosity distance of 410^{-100}_{-100} Mpc corresponding to a redshift $z = 0.09^{-0.041}_{-0.042}$. In the source frame, the initial black hole masses are 36^{+2}_{-100} and $29^{+2}_{-100}_{-100}$ and the final black hole mass is $22^{+2}_{-2}M_{\odot}$, with $30^{+2}_{-2}M_{\odot} = 7$ and $30^{+2}_{-2}M_{\odot} = 0.09^{+2}_{-100}$ the final black hole mass is the observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of errorizational wates and the first observation of a binary black hole merger.

- First direct detection of GW from the cosmos
- Most robust proof of the existence of black holes
- Discovery of the first binary black hole system
- First test of GR in the strong-field regime

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Consistency test for final mass and spin

Constraining post-Newtonian parameters

Constraining post-Newtonian parameters

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

LIGO-Virgo | Frank Elavsky | Northwestern

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Updated 2020-09-02 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Fermi

LIGO

Frequency (Hz)

Time from merger (seconds)

[ApJ 848 (2017) L12] A binary neutron star merger

[ApJ 848 (2017) L12] Multi-messenger astronomy

0111								
LIGO, Virgo								
γ-ray								
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT,	Swift, AGILE, CALET, H.E.S.S., HAWC, Konu	s-Wind						
		1						
X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRA							•	
			- I.		L L		/ \	
UV Swift, HST				•	•			
					1	/		
Optical			/					
Swope, DECam, DLT40, REM-ROS2, HST, Las HCT TZAC, LSGT, T17, Gemini-South, NTT, GR	Cumbres, SkyMapper, VISTA, MASTER, Mage OND, SOAR, ESO-VLT, KMTNet, ESO-VST, V	ellan, Subaru, Pan-STAR	BS1, E. TOBOS			 		
BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of th	e Sky, AST3-2, ATLAS, Danish Tel, DFN, T805	S, EABA	-,,					
IR								
REM-ROS2, VISTA, Gemini-South, 2MASS, Spit	ter, NTT, GROND, SOAR, NOT, ESO-VLT, Ka	nata Telescope, HST						
						ИТН		
Radio								
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFA	R, LWA, ALMA, OVRO, EVN, e-MERLIN, Mee	rKAT, Parkes, SRT, Effel:	sberg	1			/-	
/							H I	
-100 -50 0 50	10-2	10-1			100	 	101	<u> </u>
t-t_(s)	10	10	t-t _~ (dav	(s)	1	/		
/ . (-)				,	1	/		1

Why is it such a big deal?

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20 © 2017. The American Astronomical Society. All rights reserved. ©PENACCESS

Multi-messenger Observations of a Binary Neutron Star Merger

LICO Scientific Collaboration and Virge Collaboration, Fermi GHM, INTEGRAL, JecCube Collaboration, AstroSat Colatinum Zine Telluride imager Team, IPN Collaboration, The Insight-Intern Collaboration, ANTARIES Collaboration, The Dirth Collaboration, Anterson State Collaboration, The Stright-Harms Collaboration, ANTARIES Collaboration, The Dirth Collaboration, The Dirth Collaboration, Anterson State Collaboration, The Dirth Collaboration, Anterson State Collaboration, Anterson Stat

Received 2017 October 3; revised 2017 October 6; accepted 2017 October 6; published 2017 October 16

- First observation of a binary neutron star merger
- Supports the theory of *r*-process nucleosynthesis
- Neutron star mergers \leftrightarrow short γ -ray bursts
- Measure of Hubble constant $H_0 = 70 \pm 10 \text{ km/s/Mpc}$
- Constraint on nuclear matter equation of state
- Strong bound on $|c_g/c 1|$

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Independent measure of Hubble's constant

[Nature 551 (2017) 85]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Falsifying many scalar-tensor theories

$$|c_g/c - 1| < 10^{-15}$$

[PRL 119 (2017) 251304]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Tidal deformability of neutron stars

[PRL 119 (2017) 161101]

Mass, radius and equation of state

[LIGO-P1800115 (2018)]

Outline

1 General relativity

② Gravitational waves

Gravitational-wave science

4 Gravitational-wave astronomy

An upcoming network of GW observatories

- Upgrade to Advanced LIGO/Virgo + KAGRA in Japan
- Second generation: sensitivity $\times 10 \implies$ event rate $\times 10^3$

Roadmap for advanced GW detectors

[Living Rev. Relativity 19 (2016)]

VIR-0365B-20

[dated April 2020]

LISA: a gravitational antenna in space

The *LISA mission* proposal was selected by ESA in 2017 for L3 slot, with a launch planned for 2034 [http://www.lisamission.org]

LISA sources of gravitational waves

Multi-band gravitational wave astronomy

[PRL 116 (2016) 231102]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Do black holes have hair?

Geodesy

Botriomeladesy

$$M_\ell + iS_\ell = M(ia)^\ell$$

 M_ℓ arbitrary

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

How do massive black holes form?

Additional Material

Indirect evidence for the existence of GW

Orbital decay due to GW emission confirmed at the 0.16% level

Indirect evidence for the existence of GW

Orbital decay due to GW emission confirmed at the 0.16% level

Indirect evidence for the existence of GW

Double pulsar PSR J0737-3039 [Burgay *et al.*, Nature 2003]

Orbital decay due to GW emission confirmed at the 0.1% level