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What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of
spacetime that propagates at the vacuum speed of light

gravitational wave background curvature

�hab + 2R̄abcdh
cd = −16πTab

Key prediction of Einstein’s general theory of relativity
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The gravitational-wave spectrum
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Gravitational-wave science

Fundamental physics
• Strong-field tests of GR
• Black hole no-hair theorem
• Cosmic censorship conjecture
• Dark energy equation of state
• Alternatives to general relativity

Astrophysics
• Formation and evolution of compact binaries
• Origin and mechanisms of γ-ray bursts
• Internal structure of neutron stars

Cosmology
• Cosmography and measure of Hubble’s constant
• Origin and growth of supermassive black holes
• Phase transitions during primordial Universe
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Ground-based interferometric detectors

LIGO Hanford LIGO Livingston

VirgoGEO600
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Need for accurate template waveforms
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If the expected signal is known in advance then n(t) can be filtered
and h(t) recovered by matched filtering −→ template waveforms
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A recent example: the event GW151226

UFF – November 26, 2018 Alexandre Le Tiec
[PRL 116 (2016) 241103]



LISA: a gravitational antenna in space

The LISA mission proposal was accepted by ESA in 2017 for L3
slot, with a launch planned for 2034 [http://www.lisamission.org]
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LISA sources of gravitational waves
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Extreme mass ratio inspirals

• LISA sensitive to MBH ∼ 105 − 107M� → q ∼ 10−7 − 10−4

• Torb ∝ MBH ∼ hr and Tinsp ∝ MBH/q ∼ yrs
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Geodesy

Botriomeladesy

Test of the black hole no-hair theorem
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Geodesy

M` arbitrary

Botriomeladesy

M` + iS` = M(ia)`
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Testing the black hole no-hair theorem
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Q = −S2/M

[PRD 95 (2017) 103012]



Gravitational self-force

• Dissipative component ←→ gravitational waves

• Conservative component ←→ some secular effects
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Gravitational self-force

Initial Configuration

Later Configuration

Conservative

self- force

Dissipative

self- force

Direction of

apsidal advance
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Gravitational self-force

Spacetime metric

gαβ = gαβ

+ hαβ

Small parameter

q ≡ m

M
� 1

Gravitational self-force

u̇α ≡ uβ∇βuα = f α[h]

m → 0

M

u


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Equation of motion

Metric perturbation

hαβ = hdirect
αβ + htail

αβ

MiSaTaQuWa equation

u̇α =
(
gαβ + uαuβ

)︸ ︷︷ ︸
projector⊥ uα

(
1
2∇βh

tail
λσ −∇λhtail

βσ

)
uλuσ︸ ︷︷ ︸

“force”

≡ f α[htail]

Beware: the self-force is gauge-dependant
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Generalized equivalence principle

singular/self field

hS ∼ m/r

�hS ∼ −16πT

f α[hS ] = 0

regular/residual field

hR ∼ htail + local terms

�hR ∼ 0

u̇α = f α[hR ]

self-acc. motion in gαβ ⇐⇒ geodesic motion in gαβ + hRαβ
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Hamiltonian formulation

Canonical Hamiltonian

H(x , u) =
1

2
gαβ(x) uαuβ

Equations of motion

ẋα =
∂H

∂uα
, u̇α = − ∂H

∂xα

Constants of motion

• On-shell value H = − 1
2

• Energy E = −tαuα = −ut
• Ang. mom. L = φαuα = uφ

• Carter constant Q = Kαβuαuβ
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Generalized action-angle variables
[Carter, PRD 1968; Schmidt, CQG 2002]

• The Hamilton-Jacobi equation is completely separable

• Canonical transfo. to coordinate-invariant action-angle
variables (wα, Jα), with w i + 2π ≡ w i and

Jt =
1

2π

∫ 2π

0
ut dt = −E , Jr =

1

2π

∮
ur (r) dr

Jφ =
1

2π

∮
uφ dφ = L , Jθ =

1

2π

∮
uθ(θ)dθ

• Hamilton’s canonical equations of motion for H(J):

ẇα =

(
∂H

∂Jα

)
w

≡ ωα , J̇α = −
(
∂H

∂wα

)
J

= 0
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Hamiltonian first law of mechanics
[Le Tiec, CQG 2014]

• Varying H(J) and using Hamilton’s equations, as well as the
on-shell constraint H = −1

2 , yields the variational formula

δH = ωαδJα = 0

• Since H(λJ) = λ2H(J), we also have the algebraic relation

ωαJα =
∂H

∂Jα
Jα = 2H = −1

• Using non-specific variables Jα ≡ mJα and the fundamental
t-frequencies Ωα ≡ ωα/ωt ≡ z ωα, this gives

δE = Ωϕ δL+ Ωr δJr + Ωθ δJθ + z δm
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Hamiltonian formulation

• We consider only the conservative piece of the self-force:

hRαβ = 1
2

(
hret
αβ + hadv

αβ

)
− hSαβ

• The geodesic motion of a self-gravitating mass m in the
metric gαβ(x) + hRαβ(x ; γ) derives from the Hamiltonian

H(x , u; γ) = H(0)(x , u)︸ ︷︷ ︸
1
2g

αβ(x)uαuβ

+ H(1)(x , u; γ)︸ ︷︷ ︸
−1

2h
αβ
R (x ;γ)uαuβ

• Canonical transform. to action-angle variables (wα, Jα)

• Hamilton’s canonical equations of motion for H(w , J; γ):

ẇα =

(
∂H

∂Jα

)
w

≡ ωα , J̇α = −
(
∂H

∂wα

)
J

6= 0
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No secular change in the actions

• For any function f of the canonical variables (x , u) we define
the long (proper) time average

〈f 〉 ≡ lim
T→∞

1

2T

∫ T

−T
f (x(τ), u(τ))dτ

• The rate of change J̇α of the actions can be split into an
average piece and an oscillatory component:

J̇α =
〈
J̇α
〉

+ δJ̇α with
〈
δJ̇α
〉

= 0

• The average rate of change of the actions vanishes:

〈
J̇α
〉

= −
〈(

∂H(1)

∂wα

)
J

〉
= 0
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Gauge transformations

• A gauge transformation xα → xα + ξα induces a canonical
transformation with generator Ξ(x , u) = uαξ

α(x) such that

δξx
α =

(
∂Ξ

∂uα

)
x

, δξuα = −
(
∂Ξ

∂xα

)
u

• The action-angle variables (wα, Jα) are affected by this
gauge transformation in a similar manner:

δξw
α =

(
∂Ξ

∂Jα

)
w

, δξJα = −
(
∂Ξ

∂wα

)
J

• Despite that, we have the gauge-invariant identity:

ẇαJα = ωαJα = −1
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Gauge-invariant information

• Neither the action variables nor the fundamental frequencies
are gauge invariant:

δξJα 6= 0 , δξ ω
α 6= 0

• But the averaged frequencies have gauge-invariant meaning:

δξ〈ωα〉 = 0

• The averaged perturbed Hamiltonian is also gauge invariant:

δξ
〈
H(1)

〉
= 0

• The relationship between the average redshift z ≡ 1/ 〈ωt〉 and
the average t-frequencies (Ωr ,Ωθ,Ωφ) is gauge-invariant
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A special gauge choice

• The gauge freedom allows us to choose a gauge such that

J̇α = 0 , ω̇α = 0 =⇒ ωα = 〈ωα〉

• Additionally, the gauge-invariant interaction Hamiltonian
Hint(J) ∝ 〈H(1)〉 is required to satisfy〈(

∂H(1)

∂Jα

)
w

〉
=

1

2

∂Hint

∂Jα

• These gauge conditions can indeed be imposed consistently
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An effective Hamiltonian

• In this particular gauge, Hamilton’s equations of motion take
the remarkably simple form

ẇα = ωα = ωα(0)(J) +
1

2

∂Hint

∂Jα
, J̇α = 0

• Hence the dynamics is completely reproduced as a flow by the
effective Hamiltonian

H(J) = H(0)(J) +
1

2
Hint(J)

• Despite the freedom to change the constant actions Jα by a
gauge transformation, this effective Hamiltonian is unique
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First law of mechanics

• Using the effective Hamiltonian H(J), the test-mass first law
of mechanics can be extended to relative O(q):

δẼ = Ωϕ δL̃+ Ωr δJ̃r + Ωθ δJ̃θ + z δm

• It involves the renormalized actions and the average redshift

J̃α ≡ mJ̃α ≡ mJα
(

1− 1
2Hint

)
z = z(0) + z(1) = z(0)

(
1 + Hint

)
• The actions J̃α and the average redshift z , as functions of

(Ωr ,Ωθ,Ωφ), include conservative self-force corrections from
the gauge-invariant interaction Hamiltonian Hint
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Outline

1 Gravitational waves

2 EMRIs and the gravitational self-force

3 Geodesic motion in Kerr spacetime

4 Beyond the geodesic approximation
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Innermost stable circular orbit (ISCO)
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Innermost stable circular orbit (ISCO)

• The innermost stable circular orbit is identified by a vanishing
restoring radial force under small-e perturbations:

∂2H

∂r2
= 0 −→ Ωisco

• The minimum energy circular orbit is the most bound orbit
along a sequence of circular orbits:

∂E

∂Ω
= 0 −→ Ωmeco

• For Hamiltonian systems,
it can be shown that

Ωisco = Ωmeco

M,S

m

ISCO

no stable circular orbit
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Kerr ISCO frequency vs black hole spin
[Bardeen et al., ApJ 1972]
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Astrophysical relevance:
measure of a black hole spin from
the inner edge of its accretion disk
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Spins of supermassive black holes
[Reynolds, CQG 2013]

 χ

M (106 M☉)
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Frequency shift of the Kerr ISCO
[Isoyama et al., PRL 2014]

• The orbital frequency of the Kerr ISCO is shifted under the
effect of the conservative self-force:

(M + m)Ωisco = MΩ
(0)
isco(χ)︸ ︷︷ ︸

test mass
result

{
1 + q CΩ(χ)︸ ︷︷ ︸

self-force
correction

+ O(q2)

}

• The frequency shift can be computed from a stability analysis
of slightly eccentric orbits near the Kerr ISCO

• Combining the Hamiltonian first law with the MECO conditio
∂E/∂Ω = 0 yields the same result:

CΩ =
1

2

z ′′(1)(Ω
(0)
isco)

E ′′(0)(Ω
(0)
isco)
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ISCO frequency shift vs black hole spin
[Isoyama et al., PRL 2014]
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ISCO frequency shift vs black hole spin
[Isoyama et al., PRL 2014]
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[Barack & Sago, PRL 2009]

[Le Tiec et al., PRL 2012]



ISCO frequency shift vs black hole spin
[Isoyama et al., PRL 2014]
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ISCO frequency shift vs black hole spin
[Isoyama et al., PRL 2014]
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Strong-field “benchmark”



ISCO frequency shift vs black hole spin
[van de Meent, PRL 2017]
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Summary

• EMRIs are prime targets for the planned LISA observatory

• Highly accurate template waveforms are a prerequisite for
doing science with gravitational-wave observations

• We introduced a Hamiltonian formulation of the conservative
self-force (SF) dynamics in the Kerr geometry, allowing us to:

◦ Extract the gauge-invariant information contained in the SF
◦ Describe the binary dynamics including SF in a concise form
◦ Derive a “first law” of binary mechanics including SF effects

• We computed the shift in the Kerr ISCO frequency induced
by the conservative piece of the SF

• This result provides an accurate strong-field “benchmark”
for comparison with other analytical methods (PN, EOB)
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