Celestial mechanics in Kerr spacetime

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

Collaborators: R. Fujita, S. Isoyama, H. Nakano, N. Sago, and T. Tanaka

CQG **31** (2014) 097001, arXiv:1311.3836 [gr-qc] PRL **113** (2014) 161101, arXiv:1404.6133 [gr-qc] CQG **34** (2017) 134001, arXiv:1612.02504 [gr-qc]

Outline

1 Gravitational waves

2 EMRIs and the gravitational self-force

3 Geodesic motion in Kerr spacetime

4 Beyond the geodesic approximation

Outline

1 Gravitational waves

2 EMRIs and the gravitational self-force

3 Geodesic motion in Kerr spacetime

4 Beyond the geodesic approximation

What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of spacetime that propagates at the vacuum speed of light

Key prediction of Einstein's general theory of relativity

UFF - November 26, 2018

Alexandre Le Tiec

The gravitational-wave spectrum

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
 - Black hole no-hair theorem
 - Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- ✓ Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
 - Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Ground-based interferometric detectors

LVT151012

GW170814 //////

GW170817 ------

UFF - November 26, 2018

Alexandre Le Tiec

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

A recent example: the event GW151226

[PRL 116 (2016) 241103]

LISA: a gravitational antenna in space

The *LISA mission* proposal was accepted by ESA in 2017 for L3 slot, with a launch planned for 2034 [http://www.lisamission.org]

LISA sources of gravitational waves

Outline

Gravitational waves

2 EMRIs and the gravitational self-force

3 Geodesic motion in Kerr spacetime

4 Beyond the geodesic approximation

Extreme mass ratio inspirals

- LISA sensitive to $M_{
 m BH} \sim 10^5 10^7 M_\odot
 ightarrow q \sim 10^{-7} 10^{-4}$
- $T_{
 m orb} \propto M_{
 m BH} \sim$ hr and $T_{
 m insp} \propto M_{
 m BH}/q \sim$ yrs

(Credit: S. Drasco)

Botriomeladesy

(Credit: S. Drasco)

Botriomeladesy

(Credit: S. Drasco)

Test of the black hole no-hair theorem

Botriomeladesy

(Credit: S. Drasco)

$$M_{\ell} + iS_{\ell} = M(ia)^{\ell}$$

M_{ℓ} arbitrary

Testing the black hole no-hair theorem

[PRD 95 (2017) 103012]

Alexandre Le Tiec

- Dissipative component ↔ gravitational waves
- Conservative component \longleftrightarrow some secular effects

(Credit: Osburn et al. 2016)

Spacetime metric

Spacetime metric

 $g_{\alpha\beta} = g_{\alpha\beta}$

Small parameter

$$q\equiv rac{m}{M}\ll 1$$

Spacetime metric

$$g_{\alpha\beta} = g_{\alpha\beta} + h_{\alpha\beta}$$

Small parameter

$$q\equiv rac{m}{M}\ll 1$$

Spacetime metric

$$g_{\alpha\beta} = g_{\alpha\beta} + h_{\alpha\beta}$$

Small parameter

$$q\equiv rac{m}{M}\ll 1$$

Spacetime metric

$$g_{\alpha\beta} = g_{\alpha\beta} + h_{\alpha\beta}$$

Small parameter

$$q\equiv rac{m}{M}\ll 1$$

Gravitational self-force

$$\dot{u}^{\alpha} \equiv u^{\beta} \nabla_{\beta} u^{\alpha} = f^{\alpha}[h]$$

Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{ ext{direct}} + h_{lphaeta}^{ ext{tail}}$$

z^{μ}

Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{\mathsf{direct}} + h_{lphaeta}^{\mathsf{tail}}$$

MiSaTaQuWa equation

$$\dot{u}^{\alpha} = \underbrace{\left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right)}_{\text{projector} \perp u^{\alpha}} \underbrace{\left(\frac{1}{2}\nabla_{\beta}h^{\text{tail}}_{\lambda\sigma} - \nabla_{\lambda}h^{\text{tail}}_{\beta\sigma}\right)u^{\lambda}u^{\sigma}}_{\text{"force"}}$$

UFF - November 26, 2018

z^{μ}

Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{\mathsf{direct}} + h_{lphaeta}^{\mathsf{tail}}$$

MiSaTaQuWa equation

$$\dot{u}^{\alpha} = \underbrace{\left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right)}_{\text{projector} \perp u^{\alpha}} \underbrace{\left(\frac{1}{2}\nabla_{\beta}h^{\text{tail}}_{\lambda\sigma} - \nabla_{\lambda}h^{\text{tail}}_{\beta\sigma}\right)u^{\lambda}u^{\sigma}}_{\text{"force"}} \equiv f^{\alpha}[h^{\text{tail}}]$$

c_{ur}

Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{\mathsf{direct}} + h_{lphaeta}^{\mathsf{tail}}$$

MiSaTaQuWa equation

$$\dot{u}^{\alpha} = \underbrace{\left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right)}_{\text{projector} \perp u^{\alpha}} \underbrace{\left(\frac{1}{2}\nabla_{\beta}h^{\text{tail}}_{\lambda\sigma} - \nabla_{\lambda}h^{\text{tail}}_{\beta\sigma}\right)u^{\lambda}u^{\sigma}}_{\text{"force"}} \equiv f^{\alpha}[h^{\text{tail}}]$$

Beware: the self-force is gauge-dependant

Generalized equivalence principle

(Credit: A. Pound)

body's field $h_{\alpha\beta}$

singular field $h_{\alpha\beta}^S$

regular field $h^R_{\alpha\beta}$

Generalized equivalence principle

(Credit: A. Pound)

body's field $h_{\alpha\beta}$

singular field $h_{\alpha\beta}^S$

regular field $h^R_{\alpha\beta}$

singular/self field

$$h^{S} \sim m/r$$
$$\Box h^{S} \sim -16\pi T$$
$$f^{\alpha}[h^{S}] = 0$$

UFF - November 26, 2018

Alexandre Le Tiec

Generalized equivalence principle

(Credit: A. Pound)

body's field $h_{\alpha\beta}$

singular field $h^S_{lphaeta}$

regular field $h^R_{\alpha\beta}$

singular/self field

regular/residual field

$$h^{S} \sim m/r \qquad \qquad h^{R} \sim h^{\text{tail}} + \text{local terms}$$
$$\Box h^{S} \sim -16\pi T \qquad \qquad \Box h^{R} \sim 0$$
$$f^{\alpha}[h^{S}] = 0 \qquad \qquad \dot{u}^{\alpha} = f^{\alpha}[h^{R}]$$
Generalized equivalence principle

(Credit: A. Pound)

body's field $h_{\alpha\beta}$

singular field $h_{\alpha\beta}^S$ regular field $h_{\alpha\beta}^R$

singular/self field

regular/residual field

 $h^{S} \sim m/r$ $h^R \sim h^{\text{tail}} + \text{local terms}$ $\Box h^S \sim -16\pi T$ $\Box h^R \sim 0$ $f^{\alpha}[h^S] = 0$ $\dot{u}^{\alpha} = f^{\alpha}[h^R]$

self-acc. motion in $g_{\alpha\beta} \iff$ geodesic motion in $g_{\alpha\beta} + h_{\alpha\beta}^R$

Outline

Gravitational waves

2 EMRIs and the gravitational self-force

3 Geodesic motion in Kerr spacetime

4 Beyond the geodesic approximation

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Equations of motion

$$\dot{x}^{lpha} = rac{\partial H}{\partial u_{lpha}}, \quad \dot{u}_{lpha} = -rac{\partial H}{\partial x^{lpha}}$$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Equations of motion

$$\dot{x}^{lpha} = rac{\partial H}{\partial u_{lpha}}, \quad \dot{u}_{lpha} = -rac{\partial H}{\partial x^{lpha}}$$

Constants of motion

• On-shell value $H = -\frac{1}{2}$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Equations of motion

$$\dot{x}^{lpha} = rac{\partial H}{\partial u_{lpha}}, \quad \dot{u}_{lpha} = -rac{\partial H}{\partial x^{lpha}}$$

Constants of motion

• On-shell value $H = -\frac{1}{2}$

• Energy
$$E = -t^{\alpha}u_{\alpha} = -u_t$$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Equations of motion

$$\dot{x}^{lpha} = rac{\partial H}{\partial u_{lpha}}, \quad \dot{u}_{lpha} = -rac{\partial H}{\partial x^{lpha}}$$

Constants of motion

• On-shell value $H = -\frac{1}{2}$

• Energy
$$E = -t^{lpha}u_{lpha} = -u_t$$

• Ang. mom.
$$L = \phi^{lpha} u_{lpha} = u_{\phi}$$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Equations of motion

$$\dot{x}^{lpha} = rac{\partial H}{\partial u_{lpha}}, \quad \dot{u}_{lpha} = -rac{\partial H}{\partial x^{lpha}}$$

Constants of motion

- On-shell value $H = -\frac{1}{2}$
- Energy $E = -t^{\alpha}u_{\alpha} = -u_t$
- Ang. mom. $L = \phi^{\alpha} u_{\alpha} = u_{\phi}$
- Carter constant $Q = K^{lphaeta} u_{lpha} u_{eta}$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Equations of motion

$$\dot{x}^{lpha} = rac{\partial H}{\partial u_{lpha}}, \quad \dot{u}_{lpha} = -rac{\partial H}{\partial x^{lpha}}$$

Constants of motion

- On-shell value $H = -\frac{1}{2}$
- Energy $E = -t^{\alpha}u_{\alpha} = -u_t$
- Ang. mom. $L = \phi^{\alpha} u_{\alpha} = u_{\phi}$
- Carter constant $Q = K^{lphaeta} u_{lpha} u_{eta}$

Generalized action-angle variables

[Carter, PRD 1968; Schmidt, CQG 2002]

• The Hamilton-Jacobi equation is completely separable

Generalized action-angle variables

[Carter, PRD 1968; Schmidt, CQG 2002]

- The Hamilton-Jacobi equation is completely separable
- Canonical transfo. to *coordinate-invariant* action-angle variables (w^{α}, J_{α}) , with $w^{i} + 2\pi \equiv w^{i}$ and

$$J_{t} = \frac{1}{2\pi} \int_{0}^{2\pi} u_{t} dt = -E, \quad J_{r} = \frac{1}{2\pi} \oint u_{r}(r) dr$$
$$J_{\phi} = \frac{1}{2\pi} \oint u_{\phi} d\phi = L, \qquad J_{\theta} = \frac{1}{2\pi} \oint u_{\theta}(\theta) d\theta$$

Generalized action-angle variables

[Carter, PRD 1968; Schmidt, CQG 2002]

- The Hamilton-Jacobi equation is completely separable
- Canonical transfo. to *coordinate-invariant* action-angle variables (w^{α}, J_{α}) , with $w^{i} + 2\pi \equiv w^{i}$ and

$$J_t = \frac{1}{2\pi} \int_0^{2\pi} u_t \, \mathrm{d}t = -E \,, \quad J_r = \frac{1}{2\pi} \oint u_r(r) \, \mathrm{d}r$$
$$J_\phi = \frac{1}{2\pi} \oint u_\phi \, \mathrm{d}\phi = L \,, \qquad J_\theta = \frac{1}{2\pi} \oint u_\theta(\theta) \, \mathrm{d}\theta$$

• Hamilton's canonical equations of motion for H(J):

$$\dot{w}^{\alpha} = \left(\frac{\partial H}{\partial J_{\alpha}}\right)_{w} \equiv \omega^{\alpha}, \quad \dot{J}_{\alpha} = -\left(\frac{\partial H}{\partial w^{\alpha}}\right)_{J} = 0$$

Hamiltonian first law of mechanics

[Le Tiec, CQG 2014]

• Varying H(J) and using Hamilton's equations, as well as the on-shell constraint $H = -\frac{1}{2}$, yields the variational formula

 $\delta H = \omega^{\alpha} \delta J_{\alpha} = 0$

Hamiltonian first law of mechanics

[Le Tiec, CQG 2014]

 Varying H(J) and using Hamilton's equations, as well as the on-shell constraint H = -¹/₂, yields the variational formula

 $\delta H = \omega^{\alpha} \delta J_{\alpha} = 0$

• Since $H(\lambda J) = \lambda^2 H(J)$, we also have the algebraic relation

$$\omega^{\alpha} J_{\alpha} = \frac{\partial H}{\partial J_{\alpha}} J_{\alpha} = 2H = -1$$

Hamiltonian first law of mechanics

[Le Tiec, CQG 2014]

• Varying H(J) and using Hamilton's equations, as well as the on-shell constraint $H = -\frac{1}{2}$, yields the variational formula

$$\delta \mathbf{H} = \omega^{\alpha} \delta \mathbf{J}_{\alpha} = \mathbf{0}$$

• Since $H(\lambda J) = \lambda^2 H(J)$, we also have the algebraic relation

$$\omega^{\alpha} \mathbf{J}_{\alpha} = \frac{\partial \mathbf{H}}{\partial \mathbf{J}_{\alpha}} \, \mathbf{J}_{\alpha} = 2\mathbf{H} = -1$$

• Using non-specific variables $\mathcal{J}_{\alpha} \equiv m J_{\alpha}$ and the fundamental *t*-frequencies $\Omega^{\alpha} \equiv \omega^{\alpha} / \omega^{t} \equiv z \, \omega^{\alpha}$, this gives

$$\delta \mathcal{E} = \Omega^{\varphi} \, \delta \mathcal{L} + \Omega^{r} \, \delta \mathcal{J}_{r} + \Omega^{\theta} \, \delta \mathcal{J}_{\theta} + z \, \delta m$$

Outline

Gravitational waves

2 EMRIs and the gravitational self-force

3 Geodesic motion in Kerr spacetime

4 Beyond the geodesic approximation

• We consider only the *conservative piece* of the self-force:

$$h^R_{lphaeta} = rac{1}{2} ig(h^{
m ret}_{lphaeta} + h^{
m adv}_{lphaeta} ig) - h^{
m S}_{lphaeta}$$

• We consider only the *conservative piece* of the self-force:

$$h^{R}_{lphaeta} = rac{1}{2} ig(h^{
m ret}_{lphaeta} + h^{
m adv}_{lphaeta} ig) - h^{S}_{lphaeta}$$

 The geodesic motion of a self-gravitating mass m in the metric g_{αβ}(x) + h^R_{αβ}(x; γ) derives from the Hamiltonian

$$H(x, u; \gamma) = \underbrace{H_{(0)}(x, u)}_{\frac{1}{2}g^{\alpha\beta}(x)u_{\alpha}u_{\beta}} + \underbrace{H_{(1)}(x, u; \gamma)}_{-\frac{1}{2}h_{R}^{\alpha\beta}(x; \gamma)u_{\alpha}u_{\beta}}$$

• We consider only the *conservative piece* of the self-force:

$$h^{R}_{lphaeta} = rac{1}{2} ig(h^{
m ret}_{lphaeta} + h^{
m adv}_{lphaeta} ig) - h^{S}_{lphaeta}$$

 The geodesic motion of a self-gravitating mass m in the metric g_{αβ}(x) + h^R_{αβ}(x; γ) derives from the Hamiltonian

$$H(x, u; \gamma) = \underbrace{H_{(0)}(x, u)}_{\frac{1}{2}g^{\alpha\beta}(x)u_{\alpha}u_{\beta}} + \underbrace{H_{(1)}(x, u; \gamma)}_{-\frac{1}{2}h_{R}^{\alpha\beta}(x; \gamma)u_{\alpha}u_{\beta}}$$

• Canonical transform. to action-angle variables (w^{α}, J_{α})

• We consider only the *conservative piece* of the self-force:

$$h^{R}_{lphaeta} = rac{1}{2} ig(h^{
m ret}_{lphaeta} + h^{
m adv}_{lphaeta} ig) - h^{S}_{lphaeta}$$

 The geodesic motion of a self-gravitating mass m in the metric g_{αβ}(x) + h^R_{αβ}(x; γ) derives from the Hamiltonian

$$H(x, u; \gamma) = \underbrace{H_{(0)}(x, u)}_{\frac{1}{2}g^{\alpha\beta}(x)u_{\alpha}u_{\beta}} + \underbrace{H_{(1)}(x, u; \gamma)}_{-\frac{1}{2}h_{R}^{\alpha\beta}(x; \gamma)u_{\alpha}u_{\beta}}$$

- Canonical transform. to action-angle variables (w^{lpha}, J_{lpha})
- Hamilton's canonical equations of motion for $H(w, J; \gamma)$:

$$\dot{w}^{\alpha} = \left(\frac{\partial H}{\partial J_{\alpha}}\right)_{w} \equiv \omega^{\alpha}, \quad \dot{J}_{\alpha} = -\left(\frac{\partial H}{\partial w^{\alpha}}\right)_{J} \neq 0$$

No secular change in the actions

• For any function f of the canonical variables (x, u) we define the long (proper) time average

$$\langle f \rangle \equiv \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x(\tau), u(\tau)) \,\mathrm{d}\tau$$

No secular change in the actions

• For any function f of the canonical variables (x, u) we define the long (proper) time average

$$\langle f \rangle \equiv \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x(\tau), u(\tau)) \,\mathrm{d}\tau$$

• The rate of change \dot{J}_{α} of the actions can be split into an average piece and an oscillatory component:

$$\dot{J}_{lpha}=ig\langle\dot{J}_{lpha}ig
angle+\delta\dot{J}_{lpha}$$
 with $ig\langle\delta\dot{J}_{lpha}ig
angle=0$

No secular change in the actions

• For any function f of the canonical variables (x, u) we define the long (proper) time average

$$\langle f \rangle \equiv \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x(\tau), u(\tau)) \,\mathrm{d}\tau$$

• The rate of change J_{α} of the actions can be split into an average piece and an oscillatory component:

$$\dot{J}_{lpha} = \left\langle \dot{J}_{lpha} \right
angle + \delta \dot{J}_{lpha}$$
 with $\left\langle \delta \dot{J}_{lpha}
ight
angle = 0$

• The average rate of change of the actions vanishes:

$$\left\langle \dot{J}_{\alpha}\right\rangle = -\left\langle \left(\frac{\partial H_{(1)}}{\partial w^{\alpha}}\right)_{J}\right\rangle = 0$$

Gauge transformations

A gauge transformation x^α → x^α + ξ^α induces a canonical transformation with generator Ξ(x, u) = u_αξ^α(x) such that

$$\delta_{\xi} x^{\alpha} = \left(\frac{\partial \Xi}{\partial u_{\alpha}}\right)_{x}, \quad \delta_{\xi} u_{\alpha} = -\left(\frac{\partial \Xi}{\partial x^{\alpha}}\right)_{u}$$

Gauge transformations

• A gauge transformation $x^{\alpha} \to x^{\alpha} + \xi^{\alpha}$ induces a canonical transformation with generator $\Xi(x, u) = u_{\alpha}\xi^{\alpha}(x)$ such that

$$\delta_{\xi} x^{\alpha} = \left(\frac{\partial \Xi}{\partial u_{\alpha}}\right)_{x}, \quad \delta_{\xi} u_{\alpha} = -\left(\frac{\partial \Xi}{\partial x^{\alpha}}\right)_{u}$$

• The action-angle variables (w^{α}, J_{α}) are affected by this gauge transformation in a similar manner:

$$\delta_{\xi} \mathbf{w}^{\alpha} = \left(\frac{\partial \Xi}{\partial J_{\alpha}}\right)_{\mathbf{w}}, \quad \delta_{\xi} J_{\alpha} = -\left(\frac{\partial \Xi}{\partial \mathbf{w}^{\alpha}}\right)_{J}$$

Gauge transformations

• A gauge transformation $x^{\alpha} \rightarrow x^{\alpha} + \xi^{\alpha}$ induces a canonical transformation with generator $\Xi(x, u) = u_{\alpha}\xi^{\alpha}(x)$ such that

$$\delta_{\xi} x^{\alpha} = \left(\frac{\partial \Xi}{\partial u_{\alpha}}\right)_{x}, \quad \delta_{\xi} u_{\alpha} = -\left(\frac{\partial \Xi}{\partial x^{\alpha}}\right)_{u}$$

• The action-angle variables (w^{α}, J_{α}) are affected by this gauge transformation in a similar manner:

$$\delta_{\xi} \mathbf{w}^{\alpha} = \left(\frac{\partial \Xi}{\partial J_{\alpha}}\right)_{\mathbf{w}}, \quad \delta_{\xi} J_{\alpha} = -\left(\frac{\partial \Xi}{\partial \mathbf{w}^{\alpha}}\right)_{J}$$

• Despite that, we have the *gauge-invariant* identity:

$$\dot{w}^{\alpha}J_{\alpha} = \omega^{\alpha}J_{\alpha} = -1$$

• Neither the action variables nor the fundamental frequencies are gauge invariant:

$$\delta_{\xi} \mathbf{J}_{\alpha} \neq \mathbf{0} \,, \quad \delta_{\xi} \, \boldsymbol{\omega}^{\alpha} \neq \mathbf{0}$$

• Neither the action variables nor the fundamental frequencies are gauge invariant:

$$\delta_{\xi} \mathbf{J}_{\alpha} \neq \mathbf{0} \,, \quad \delta_{\xi} \,\omega^{\alpha} \neq \mathbf{0}$$

• But the *averaged* frequencies have gauge-invariant meaning:

$$\delta_{\xi} \langle \omega^{\alpha} \rangle = \mathbf{0}$$

• Neither the action variables nor the fundamental frequencies are gauge invariant:

$$\delta_{\xi} \mathbf{J}_{\alpha} \neq \mathbf{0} \,, \quad \delta_{\xi} \,\omega^{\alpha} \neq \mathbf{0}$$

• But the *averaged* frequencies have gauge-invariant meaning:

$$\delta_{\xi} \langle \omega^{\alpha} \rangle = \mathbf{0}$$

• The *averaged* perturbed Hamiltonian is also gauge invariant:

$$\delta_{\xi} \left\langle H_{(1)} \right\rangle = 0$$

• Neither the action variables nor the fundamental frequencies are gauge invariant:

$$\delta_{\xi} \mathbf{J}_{\alpha} \neq \mathbf{0} \,, \quad \delta_{\xi} \,\omega^{\alpha} \neq \mathbf{0}$$

• But the averaged frequencies have gauge-invariant meaning:

$$\delta_{\xi} \langle \omega^{\alpha} \rangle = \mathbf{0}$$

• The *averaged* perturbed Hamiltonian is also gauge invariant:

$$\delta_{\xi} \left\langle H_{(1)} \right\rangle = 0$$

• The relationship between the average redshift $z \equiv 1/\langle \omega^t \rangle$ and the average *t*-frequencies $(\Omega^r, \Omega^\theta, \Omega^\phi)$ is gauge-invariant

A special gauge choice

• The gauge freedom allows us to choose a gauge such that

$$\dot{J}_{\alpha} = 0, \quad \dot{\omega}^{\alpha} = 0 \implies \omega^{\alpha} = \langle \omega^{\alpha} \rangle$$

A special gauge choice

• The gauge freedom allows us to choose a gauge such that

$$\dot{J}_{\alpha} = 0, \quad \dot{\omega}^{\alpha} = 0 \implies \omega^{\alpha} = \langle \omega^{\alpha} \rangle$$

• Additionally, the gauge-invariant interaction Hamiltonian $H_{int}(J) \propto \langle H_{(1)} \rangle$ is required to satisfy

$$\left\langle \left(\frac{\partial H_{(1)}}{\partial J_{\alpha}}\right)_{w}\right\rangle = \frac{1}{2}\frac{\partial H_{\text{int}}}{\partial J_{\alpha}}$$

A special gauge choice

The gauge freedom allows us to choose a gauge such that

$$\dot{J}_{\alpha} = 0, \quad \dot{\omega}^{\alpha} = 0 \implies \omega^{\alpha} = \langle \omega^{\alpha} \rangle$$

• Additionally, the gauge-invariant interaction Hamiltonian $H_{int}(J) \propto \langle H_{(1)} \rangle$ is required to satisfy

$$\left\langle \left(\frac{\partial H_{(1)}}{\partial J_{\alpha}}\right)_{w}\right\rangle = \frac{1}{2}\frac{\partial H_{\text{int}}}{\partial J_{\alpha}}$$

These gauge conditions can indeed be imposed consistently

An effective Hamiltonian

• In this particular gauge, Hamilton's equations of motion take the remarkably simple form

$$\dot{w}^{lpha} = \omega^{lpha} = \omega^{lpha}_{(0)}(J) + rac{1}{2}rac{\partial \mathcal{H}_{ ext{int}}}{\partial J_{lpha}}, \quad \dot{J}_{lpha} = 0$$

An effective Hamiltonian

 In this particular gauge, Hamilton's equations of motion take the remarkably simple form

$$\dot{w}^{lpha} = \omega^{lpha} = \omega^{lpha}_{(0)}(J) + rac{1}{2}rac{\partial \mathcal{H}_{ ext{int}}}{\partial J_{lpha}}\,, \quad \dot{J}_{lpha} = 0$$

• Hence the dynamics is completely reproduced as a flow by the effective Hamiltonian

$$\mathcal{H}(J) = H_{(0)}(J) + rac{1}{2}H_{\mathrm{int}}(J)$$

An effective Hamiltonian

 In this particular gauge, Hamilton's equations of motion take the remarkably simple form

$$\dot{w}^{lpha} = \omega^{lpha} = \omega^{lpha}_{(0)}(J) + rac{1}{2}rac{\partial \mathcal{H}_{ ext{int}}}{\partial J_{lpha}}\,, \quad \dot{J}_{lpha} = 0$$

• Hence the dynamics is completely reproduced as a flow by the effective Hamiltonian

$$\mathcal{H}(J) = H_{(0)}(J) + \frac{1}{2}H_{\text{int}}(J)$$

• Despite the freedom to change the constant actions J_{α} by a gauge transformation, this effective Hamiltonian is *unique*
First law of mechanics

Using the effective Hamiltonian *H(J)*, the test-mass *first law* of mechanics can be extended to relative *O(q)*:

$$\delta \tilde{\mathcal{E}} = \Omega^{\varphi} \, \delta \tilde{\mathcal{L}} + \Omega^{r} \, \delta \tilde{\mathcal{J}}_{r} + \Omega^{\theta} \, \delta \tilde{\mathcal{J}}_{\theta} + z \, \delta m$$

First law of mechanics

Using the effective Hamiltonian *H(J)*, the test-mass *first law* of mechanics can be extended to relative *O(q)*:

$$\delta \tilde{\mathcal{E}} = \Omega^{\varphi} \, \delta \tilde{\mathcal{L}} + \Omega^r \, \delta \tilde{\mathcal{J}}_r + \Omega^{\theta} \, \delta \tilde{\mathcal{J}}_{\theta} + z \, \delta m$$

• It involves the renormalized actions and the average redshift

$$\begin{split} \tilde{\mathcal{J}}_{\alpha} &\equiv m \tilde{J}_{\alpha} \equiv m J_{\alpha} \left(1 - \frac{1}{2} \mathcal{H}_{\text{int}} \right) \\ z &= z_{(0)} + z_{(1)} = z_{(0)} \left(1 + \mathcal{H}_{\text{int}} \right) \end{split}$$

First law of mechanics

Using the effective Hamiltonian *H(J)*, the test-mass *first law* of mechanics can be extended to relative *O(q)*:

$$\delta \tilde{\mathcal{E}} = \Omega^{\varphi} \, \delta \tilde{\mathcal{L}} + \Omega^r \, \delta \tilde{\mathcal{J}}_r + \Omega^{\theta} \, \delta \tilde{\mathcal{J}}_{\theta} + z \, \delta m$$

• It involves the renormalized actions and the average redshift

$$\begin{split} \tilde{\mathcal{J}}_{\alpha} &\equiv m \tilde{J}_{\alpha} \equiv m J_{\alpha} \left(1 - \frac{1}{2} \mathcal{H}_{\text{int}} \right) \\ z &= z_{(0)} + z_{(1)} = z_{(0)} \left(1 + \mathcal{H}_{\text{int}} \right) \end{split}$$

The actions *J*_α and the average redshift *z*, as functions of (Ω^r, Ω^θ, Ω^φ), include conservative self-force corrections from the gauge-invariant interaction Hamiltonian *H*_{int}

Outline

Gravitational waves

- 2 EMRIs and the gravitational self-force
- **3** Geodesic motion in Kerr spacetime
- 4 Beyond the geodesic approximation

5 Innermost stable circular orbits

UFF - November 26, 2018

UFF - November 26, 2018

UFF - November 26, 2018

UFF - November 26, 2018

• The innermost stable circular orbit is identified by a vanishing restoring radial force under small-*e* perturbations:

$$rac{\partial^2 H}{\partial r^2} = 0 \quad \longrightarrow \quad \Omega_{
m isco}$$

• The minimum energy circular orbit is the most bound orbit along a sequence of circular orbits:

$$rac{\partial E}{\partial \Omega} = 0 \quad \longrightarrow \quad \Omega_{meco}$$

• For Hamiltonian systems, it can be shown that

$$\Omega_{\text{isco}} = \Omega_{\text{meco}}$$

Kerr ISCO frequency vs black hole spin

[Bardeen et al., ApJ 1972]

Kerr ISCO frequency vs black hole spin

[Bardeen et al., ApJ 1972]

UFF - November 26, 2018

Spins of supermassive black holes

[Reynolds, CQG 2013]

Frequency shift of the Kerr ISCO

[Isoyama et al., PRL 2014]

• The orbital frequency of the Kerr ISCO is shifted under the effect of the conservative self-force:

$$(M+m)\Omega_{\rm isco} = \underbrace{M\Omega_{\rm isco}^{(0)}(\chi)}_{\substack{\rm test \ mass \\ \rm result}} \left\{ 1 + \underbrace{q \ C_{\Omega}(\chi)}_{\substack{\rm self-force \\ \rm correction}} + \mathcal{O}(q^2) \right\}$$

Frequency shift of the Kerr ISCO

[Isoyama et al., PRL 2014]

• The orbital frequency of the Kerr ISCO is shifted under the effect of the conservative self-force:

$$(M+m)\Omega_{\rm isco} = \underbrace{M\Omega_{\rm isco}^{(0)}(\chi)}_{\substack{\rm test \ mass \\ \rm result}} \left\{ 1 + \underbrace{q \ C_{\Omega}(\chi)}_{\substack{\rm self-force \\ \rm correction}} + \mathcal{O}(q^2) \right\}$$

• The frequency shift can be computed from a stability analysis of slightly eccentric orbits near the Kerr ISCO

Frequency shift of the Kerr ISCO

[Isoyama et al., PRL 2014]

• The orbital frequency of the Kerr ISCO is shifted under the effect of the conservative self-force:

$$(M+m)\Omega_{\rm isco} = \underbrace{M\Omega_{\rm isco}^{(0)}(\chi)}_{\substack{\rm test\ mass\\ \rm result}} \left\{ 1 + \underbrace{q\ C_{\Omega}(\chi)}_{\substack{\rm self-force\\ \rm correction}} + \mathcal{O}(q^2) \right\}$$

- The frequency shift can be computed from a stability analysis of slightly eccentric orbits near the Kerr ISCO
- Combining the Hamiltonian first law with the MECO conditio $\partial E/\partial \Omega = 0$ yields the same result:

$$\mathcal{C}_{\Omega} = rac{1}{2} \, rac{z_{(1)}''(\Omega_{
m isco}^{(0)})}{E_{(0)}''(\Omega_{
m isco}^{(0)})}$$

[Isoyama et al., PRL 2014]

UFF - November 26, 2018

[Isoyama et al., PRL 2014]

UFF - November 26, 2018

[Isoyama et al., PRL 2014]

UFF - November 26, 2018

[Isoyama et al., PRL 2014]

UFF - November 26, 2018

[van de Meent, PRL 2017]

• EMRIs are prime targets for the planned LISA observatory

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations
- We introduced a Hamiltonian formulation of the conservative self-force (SF) dynamics in the Kerr geometry, allowing us to:

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations
- We introduced a Hamiltonian formulation of the conservative self-force (SF) dynamics in the Kerr geometry, allowing us to:
 - Extract the gauge-invariant information contained in the SF

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations
- We introduced a Hamiltonian formulation of the conservative self-force (SF) dynamics in the Kerr geometry, allowing us to:
 - Extract the gauge-invariant information contained in the SF
 - Describe the binary dynamics including SF in a concise form

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations
- We introduced a Hamiltonian formulation of the conservative self-force (SF) dynamics in the Kerr geometry, allowing us to:
 - Extract the gauge-invariant information contained in the SF
 - Describe the binary dynamics including SF in a concise form
 - Derive a "first law" of binary mechanics including SF effects

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations
- We introduced a Hamiltonian formulation of the conservative self-force (SF) dynamics in the Kerr geometry, allowing us to:
 - Extract the gauge-invariant information contained in the SF
 - Describe the binary dynamics including SF in a concise form
 - Derive a "first law" of binary mechanics including SF effects
- We computed the shift in the Kerr ISCO frequency induced by the conservative piece of the SF

- EMRIs are prime targets for the planned LISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with gravitational-wave observations
- We introduced a Hamiltonian formulation of the conservative self-force (SF) dynamics in the Kerr geometry, allowing us to:
 - Extract the gauge-invariant information contained in the SF
 - Describe the binary dynamics including SF in a concise form
 - Derive a "first law" of binary mechanics including SF effects
- We computed the shift in the Kerr ISCO frequency induced by the conservative piece of the SF
- This result provides an accurate strong-field "benchmark" for comparison with other analytical methods (PN, EOB)