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What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of
spacetime that propagates at the vacuum speed of light

gravitational wave background curvature
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Key prediction of Einstein's general theory of relativity

UFF — November 26, 2018 Alexandre Le Tiec



The gravitational-wave spectrum

Quantum fluctuations in early universe
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Gravitational-wave science

Fundamental physics

Strong-field tests of GR

Black hole no-hair theorem
Cosmic censorship conjecture
Dark energy equation of state
Alternatives to general relativity

Astrophysics
e Formation and evolution of compact binaries
e Origin and mechanisms of «-ray bursts
e Internal structure of neutron stars

Cosmology

e Cosmography and measure of Hubble's constant
e Origin and growth of supermassive black holes
e Phase transitions during primordial Universe
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Ground-based interferometric detectors

GEO600
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Need for accurate template waveforms
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If the expected signal is known in advance then n(t) can be filtered
and h(t) recovered by matched filtering — template waveforms
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Need for accurate template waveforms
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A recent example:
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LISA: a gravitational antenna in space

Earth 2 5milion kM

The LISA mission proposal was accepted by ESA in 2017 for L3
slot, with a launch planned for 2034 [http://www.lisamission.org]
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LISA sources of gravitational waves
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Outline

@® EMRIs and the gravitational self-force
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Extreme mass ratio inspirals

(Credit: L. Barack)

e LISA sensitive to Mgy ~ 10° — 10°'My — g~ 107 —10~*
e Top X Mgy ~ hr and Tinsp o< MgH/q ~ yrs
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Geodesy
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Botriomeladesy
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Geodesy Botriomeladesy
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Test of the black hole no-hair theorem
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Botriomeladesy

(Credit: S. Drasco)
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Testing the black hole no-hair theorem

AKI
AK

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11M12
model

!

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11M12
model

[ AKK
AK

[PRD 95 (2017) 103012]

AKI
AKS

0
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11M12
model

Q=-S%/M

Alexandre Le Tiec



Gravitational self-force

S accelerating orbit

(Credit: A. Pound)

Kerr geodesic

e Dissipative component <— gravitational waves

e Conservative component <— some secular effects
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Gravitational self-force

Dissipative
self-force

Initial Configuration /\
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(Credit: Osburn et al. 2016)
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Gravitational self-force

Spacetime metric

gaB = 8agp

m-20
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Gravitational self-force

Spacetime metric

gaB = 8agp

Small parameter
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Gravitational self-force

Spacetime metric

gap = ap + has

Small parameter
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Gravitational self-force

Spacetime metric
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Gravitational self-force

Spacetime metric

gap = ap + ha;d

Small parameter

<1

Q
i
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Gravitational self-force

0% = uPVau® = F[h]
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Equation of motion

Metric perturbation

ha,B — hgiéect + h};?él
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Equation of motion

Metric perturbation

ha,@ — hgiéect + h};galél

MiSaTaQuWa equation

0 = (gaﬁ + uaU’B) (%Vﬁhgﬂl o v/\hgacil)u)\ua

projector L u® “force”
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Equation of motion

Metric perturbation

ha,@ — hgiéect + h};galél

MiSaTaQuWa equation

0 = (gaﬁ + uauﬂ) ( V htal| o v/\htall) A N fa[htail]

-~

projector L u® force
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Equation of motion

Metric perturbation

ha,@ — hgiéect + hgiél

MiSaTaQuWa equation

0 = (g% + uuP) (3VphR! — VAhE) uru” = Fo[h]

~

-~

projector L u® “force”
Beware: the self-force is gauge-dependant
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Generalized equivalence principle

body's field haps singular field h5 regular field [,
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Generalized equivalence principle

body's field haps singular field h5 regular field [,

singular/self field

h> ~m/r
Oh° ~ =167 T
flh°] =0
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Generalized equivalence principle

body's field haps singular field h5 regular field [,
singular/self field regular/residual field
h> ~m/r AR ~ A 4 local terms
Oh° ~ —167T OhR ~ 0
flh°] =0 0 = fo[hR]
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Generalized equivalence principle

body's field haps singular field h5 regular field A,
singular/self field regular/residual field
h> ~m/r AR ~ A 4 local terms
Oh° ~ —167T OhR ~ 0
flh°] =0 0 = fo[hR]

self-acc. motion in g,3 <= geodesic motion in g,z + hfﬁ
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Outline

© Geodesic motion in Kerr spacetime

UFF — November 26, 2018 Alexandre Le Tiec



Hamiltonian formulation

Canonical Hamiltonian

1
H(x,u) = 5 g% (x) uqup
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Hamiltonian formulation

Canonical Hamiltonian

1
H(x,u) = 5 g% (x) uqup

Equations of motion

OH . oH

Vi8]
X = ——, = ———
Ouy’ Ox®
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Hamiltonian formulation

Canonical Hamiltonian

1
H(x,u) = 5 g% (x) uqup

Equations of motion

OH . oH

Vi8]
X = ——, = ———
Ouy’ Ox®

Constants of motion

e On-shell value H = —%
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Hamiltonian formulation

Canonical Hamiltonian

1
H(x,u) = 5 g% (x) uqup

Equations of motion

.o OH . OH
%o —

= — Uy = ———
Ouy’ Ox®

Constants of motion

e On-shell value H = —%

o Energy E = —t%uy = —uy
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Hamiltonian formulation

Canonical Hamiltonian

1
H(x,u) = 5 g% (x) uqup

Equations of motion

OH . oH

Vi8]
X = ——, = ———
Ouy’ Ox®

Constants of motion

e On-shell value H = —%
e Energy E = —t%u, = —u;

e Ang. mom. L = ¢%u, = uy
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Hamiltonian formulation
Canonical Hamiltonian

1
H(x,u) = 5 g% (x) uqup

Equations of motion

_OH oH

Vi8]
XY= —— | = ———
Ouy’ Ox®

Constants of motion

On-shell value H = —3

Energy E = —t%uy, = —uy
e Ang. mom. L = ¢%u, = uy

Carter constant Q = K*u,ug
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Hamiltonian formulation

Canonical Hamiltonian spin axis
| ==

horizon |

1
H(x,u) = 5 g% (x) uqup

Equations of motion

.o OH . OH
%o —

= — Uy = ———
Ouy’ Ox®

Constants of motion

circular

On-shell value H = —%

Energy E = —t“uy = —uy

cos 6

e Ang. mom. L = ¢%u, = uy

Carter constant Q = K*Bu,, ug

55 6 65 75 8 85 9 95 10 105
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Generalized action-angle variables
[Carter, PRD 1968; Schmidt, CQG 2002]

e The Hamilton-Jacobi equation is completely separable
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Generalized action-angle variables
[Carter, PRD 1968; Schmidt, CQG 2002]

e The Hamilton-Jacobi equation is completely separable

e Canonical transfo. to coordinate-invariant action-angle
variables (w®, J,), with w' + 27 = w' and

Jt:i 2Trufdt:—E J -1 u(r)dr
27 Jo T 2 r
1 1
J¢:27rj{u¢d¢:L, JQZ% UQ(Q)dQ
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Generalized action-angle variables
[Carter, PRD 1968; Schmidt, CQG 2002]

e The Hamilton-Jacobi equation is completely separable

e Canonical transfo. to coordinate-invariant action-angle
variables (w®, J,), with w' + 27 = w' and

Jt:i 2Trufdt:—E J -1 u(r)dr
27 Jo T 2 r
1 1
J¢:27rj{u¢d¢:L, ngg Ug(e)dg

e Hamilton's canonical equations of motion for H(J):

s ai e’ | 8H _
) R T
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Hamiltonian first law of mechanics
[Le Tiec, CQG 2014]

e Varying H(J) and using Hamilton's equations, as well as the
on-shell constraint H = —%, yields the variational formula

OH=w"9J, =0

UFF — November 26, 2018 Alexandre Le Tiec



Hamiltonian first law of mechanics
[Le Tiec, CQG 2014]

e Varying H(J) and using Hamilton's equations, as well as the
on-shell constraint H = —%, yields the variational formula

OH =w"Jy, =0
e Since H(AJ) = A2H(J), we also have the algebraic relation

oH
W'y == Jy=2H=-1
0Jo
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Hamiltonian first law of mechanics
[Le Tiec, CQG 2014]

e Varying H(J) and using Hamilton's equations, as well as the
on-shell constraint H = —%, yields the variational formula

OH =w"Jy, =0
e Since H(AJ) = A2H(J), we also have the algebraic relation

oH
W'y == Jy=2H=-1
0Jo

e Using non-specific variables 7, = mJ, and the fundamental
t-frequencies 0% = W /w' = zw", this gives

8E=Q08L+Q06T,+Q06T)+ z6m
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Outline

@ Beyond the geodesic approximation
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Hamiltonian formulation

e We consider only the conservative piece of the self-force:

S
hfs = 3 (hiss + %) — h2s
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Hamiltonian formulation

e We consider only the conservative piece of the self-force:
R d S
hag = 5 (55 + h35) — hag

e The geodesic motion of a self-gravitating mass m in the
metric g,5(x) + hgﬁ(x; ) derives from the Hamiltonian

H(x, u;v) = Hy(x,u) + Hay(x, u;v)
———— —_———

1 1
588 (x)uaug —jhgﬁ(x;w)uawa

UFF — November 26, 2018 Alexandre Le Tiec



Hamiltonian formulation

e We consider only the conservative piece of the self-force:
R d S
hag = 5 (55 + h35) — hag

e The geodesic motion of a self-gravitating mass m in the
metric g,5(x) + hgﬁ(x; ) derives from the Hamiltonian

H(x, u;v) = Hy(x,u) + Hay(x, u;v)
———— —_———

1 1
588 (x)uaug —jhgﬁ(x;w)uawa

e Canonical transform. to action-angle variables (w®, J,)
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Hamiltonian formulation

e We consider only the conservative piece of the self-force:

haﬁ — (hret + hadv) _ hgﬁ

e The geodesic motion of a self-gravitating mass m in the
metric g,5(x) + hgﬁ(x; ) derives from the Hamiltonian

H(x, u;v) = Hy(x,u) + Hay(x, u;v)
———— —_———

_lhﬂﬁ

1
jgo‘ﬁ(x)uauﬂ 3> Np (xi7)uaug

e Canonical transform. to action-angle variables (w®, J,)

e Hamilton's canonical equations of motion for H(w, J;~):

oH
8Ja

OH

a wo

L,A/‘(} , JOL

oo ()
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No secular change in the actions

e For any function f of the canonical variables (x, u) we define
the long (proper) time average

T

()= lim = [ F(xt).u(r)) dr
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No secular change in the actions

e For any function f of the canonical variables (x, u) we define
the long (proper) time average

T

()= lim = [ F(xt).u(r)) dr

e The rate of change J,, of the actions can be split into an
average piece and an oscillatory component:

Jo={Js) +0J, with (5J,)=0
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No secular change in the actions

e For any function f of the canonical variables (x, u) we define
the long (proper) time average

T

()= lim = [ F(xt).u(r)) dr

e The rate of change J,, of the actions can be split into an
average piece and an oscillatory component:

Jo={Js) +0J, with (5J,)=0

e The average rate of change of the actions vanishes:

() -
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Gauge transformations

e A gauge transformation x® — x® 4 £% induces a canonical
transformation with generator =(x, u) = u,&“(x) such that

= s
o= () o= (o),
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Gauge transformations

e A gauge transformation x® — x® 4 £% induces a canonical
transformation with generator =(x, u) = u,&“(x) such that

o (0= (o=
o= (n ) o= (50),

e The action-angle variables (w®, J,) are affected by this
gauge transformation in a similar manner:

o (0= B 0=
5§W B (8J(y>w’ 6€J B <8W(Y>J
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Gauge transformations

e A gauge transformation x® — x® 4 £% induces a canonical
transformation with generator =(x, u) = u,&“(x) such that

o (0= (o=
o= (n ) o= (50),

e The action-angle variables (w®, J,) are affected by this
gauge transformation in a similar manner:

o (0= B 0=
5€W B (8J(y>w’ 6€J B <8W(Y>J

e Despite that, we have the gauge-invariant identity:

wéd, =wJ, = -1
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Gauge-invariant information

e Neither the action variables nor the fundamental frequencies
are gauge invariant:

Sedo 0, Sew” £0
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Gauge-invariant information

e Neither the action variables nor the fundamental frequencies
are gauge invariant:

0¢do #0, Oew™ #0
e But the averaged frequencies have gauge-invariant meaning:

de(w™) =0
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Gauge-invariant information

e Neither the action variables nor the fundamental frequencies
are gauge invariant:

0¢do #0, Oew™ #0
e But the averaged frequencies have gauge-invariant meaning:
de(w™) =0
e The averaged perturbed Hamiltonian is also gauge invariant:

J¢(H1)) =0
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Gauge-invariant information

Neither the action variables nor the fundamental frequencies
are gauge invariant:

Sedo #0, ew” £0

But the averaged frequencies have gauge-invariant meaning:

de(w™) =0

The averaged perturbed Hamiltonian is also gauge invariant:

J¢(H1)) =0

The relationship between the average redshift z =1/ (w') and
the average t-frequencies (027, 07, 0?) is gauge-invariant
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A special gauge choice

e The gauge freedom allows us to choose a gauge such that

Jo=0, 0"=0 = w"=(w")
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A special gauge choice

e The gauge freedom allows us to choose a gauge such that
Jo=0, "=0 = w"= (")

e Additionally, the gauge-invariant interaction Hamiltonian
Hint(J) o< (H(1)) is required to satisfy

OH(1) _ 1 0Hin
8. )./ " 200,
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A special gauge choice

e The gauge freedom allows us to choose a gauge such that
Jo=0, =0 = w"=(w")

e Additionally, the gauge-invariant interaction Hamiltonian
Hint(J) o< (H(1)) is required to satisfy

OH(1) _ 1 0Hin
8. )./ " 200,

e These gauge conditions can indeed be imposed consistently
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An effective Hamiltonian

e In this particular gauge, Hamilton's equations of motion take
the remarkably simple form

1 aHint

29, Jo =0

w® = w” = wfé)(J) +
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An effective Hamiltonian

e In this particular gauge, Hamilton's equations of motion take
the remarkably simple form

laHint
2 04,

et « (0%

W =w" = wip(J) + Jo=0

e Hence the dynamics is completely reproduced as a flow by the
effective Hamiltonian

H(J) = Hiy() + 5 ()
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An effective Hamiltonian

e In this particular gauge, Hamilton's equations of motion take
the remarkably simple form

laHint
2 0J,

V-V”':LU”:UJ(OE))(J)A_ JQZO

e Hence the dynamics is completely reproduced as a flow by the
effective Hamiltonian

H(J) = Hiy() + 5 ()

e Despite the freedom to change the constant actions J, by a
gauge transformation, this effective Hamiltonian is unique
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First law of mechanics
e Using the effective Hamiltonian #(J), the test-mass first law

of mechanics can be extended to relative O(q):

6E=Q08L+Q06T, +Q06T)+ z6m
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First law of mechanics

e Using the effective Hamiltonian #(J), the test-mass first law
of mechanics can be extended to relative O(q):
66 =Q7 6L+ Q" 6T, + Q" 6Ty + z6m
e It involves the renormalized actions and the average redshift
jl = m](x = mJa <]- - %Hint)

2= 20) + 21) = Z0) (1 + Hine)
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First law of mechanics
e Using the effective Hamiltonian #(J), the test-mass first law
of mechanics can be extended to relative O(q):
08 = Q7 8L+ Q" 6T, + 9767y + z6m
e It involves the renormalized actions and the average redshift
o= mlo = miy (1= SHine)
2 = 20) + 21) = Z(0) (1 + Hint)

e The actions .7,, and the average redshift z, as functions of
(©27,97,Q%), include conservative self-force corrections from
the gauge-invariant interaction Hamiltonian Hi.;
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Outline

@ Innermost stable circular orbits
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Innermost stable circular orbit (ISCO)
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Innermost stable circular orbit (ISCO)
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Innermost stable circular orbit (ISCO)
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Innermost stable circular orbit (ISCO)
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Innermost stable circular orbit (ISCO)

e The innermost stable circular orbit is identified by a vanishing
restoring radial force under small-e perturbations:

0?H
W =0 — Qisco

e The minimum energy circular orbit is the most bound orbit
along a sequence of circular orbits:

E e
gQ =0 —  Qmeco ISCO

e For Hamiltonian systems, ‘MS

it can be shown that y .
Qisco - Qmeco /
no stable circular orbit
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Kerr ISCO frequency vs black hole spin

[Bardeen et al., ApJ 1972]
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Kerr ISCO frequency vs black hole spin

[Bardeen et al., ApJ 1972]

0.5
0.4
Astrophysical relevance:

L 03 measure of a black hole spin from
E’é’ the inner edge of its accretion disk
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Spins of supermassive black holes
[Reynolds, CQG 2013]
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Frequency shift of the Kerr ISCO

[lsoyama et al., PRL 2014]

e The orbital frequency of the Kerr ISCO is shifted under the
effect of the conservative self-force:

(M + m)Qisco = MQ|(SOC)0(X) {1 +q CQ(X) =+ O(qz)}
N — ~——

test mass self-force
result correction
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e The orbital frequency of the Kerr ISCO is shifted under the
effect of the conservative self-force:

(M + m)Qisco = MQI(SOC)O(X) {1 +q CQ(X) =+ O(q2)}
N — ~——

test mass self-force
result correction

e The frequency shift can be computed from a stability analysis
of slightly eccentric orbits near the Kerr ISCO
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Frequency shift of the Kerr ISCO

[lsoyama et al., PRL 2014]

e The orbital frequency of the Kerr ISCO is shifted under the
effect of the conservative self-force:

(M + m)Qisco = MQ|(SOC)0(X) {1 +q CQ(X) =+ O(q2)}
N — ~——

test mass self-force
result correction

e The frequency shift can be computed from a stability analysis
of slightly eccentric orbits near the Kerr ISCO

e Combining the Hamiltonian first law with the MECO conditio
OE /02 = 0 yields the same result:

1 Z(”1)(Qi(soc)o)

T2 (0)
2 E(lé)) (Qisco)

Q
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ISCO frequency shift vs black hole spin

[lsoyama et al., PRL 2014]
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ISCO frequency shift vs black hole spin

[lsoyama et al., PRL 2014]
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ISCO frequency shift vs black hole spin

[lsoyama et al., PRL 2014]
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ISCO frequency shift vs black hole spin

[lsoyama et al., PRL 2014]
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ISCO frequency shift vs black hole spin
[van de Meent, PRL 2017]
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Summary

e EMRIs are prime targets for the planned LISA observatory
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Summary

e EMRIs are prime targets for the planned LISA observatory

e Highly accurate template waveforms are a prerequisite for
doing science with gravitational-wave observations

e We introduced a Hamiltonian formulation of the conservative
self-force (SF) dynamics in the Kerr geometry, allowing us to:

o Extract the gauge-invariant information contained in the SF
o Describe the binary dynamics including SF in a concise form
o Derive a “first law” of binary mechanics including SF effects

e We computed the shift in the Kerr ISCO frequency induced
by the conservative piece of the SF

e This result provides an accurate strong-field “benchmark”
for comparison with other analytical methods (PN, EOB)
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