Quelles perspectives théoriques pour l'astrophysique des ondes gravitationnelles ?

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

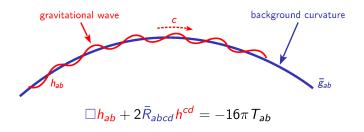
Outline

1 Introduction

2 The present

3 The future

Outline

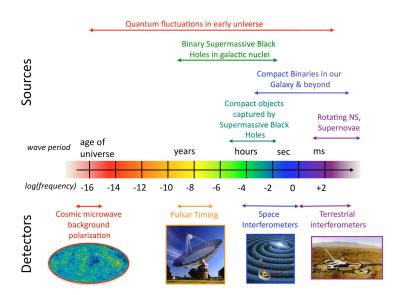

1 Introduction

2 The present

3 The future

What is a gravitational wave?

A gravitational wave is a tiny ripple in the curvature of spacetime that propagates at the vacuum speed of light


Key prediction of Einstein's general theory of relativity

Electromagnetic vs gravitational waves

	Electromagnetic waves	Gravitational waves
Origin	electromagnetic field	spacetime curvature
Nature	waves in spacetime	waves of spacetime
Sources	accelerated charges	accelerated masses
Wavelength	\ll size of source	\gtrsim size of source
Structure	dipolar	quadrupolar
Coherence	low	high
Interaction	strong	weak
Detection	power	amplitude
Analogy	vision	audition

Complementary sources of information about the Universe

The gravitational-wave spectrum

Fundamental physics

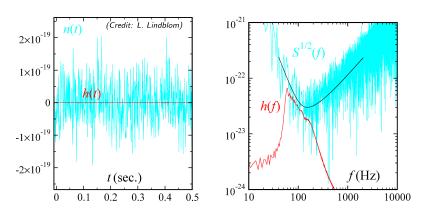
- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- · Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

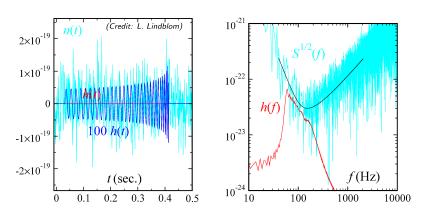
- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Fundamental physics

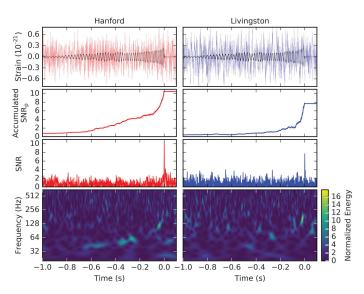

- ✓ Strong-field tests of GR
 - Black hole no-hair theorem
 - Cosmic censorship conjecture
 - Dark energy equation of state
- ✓ Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- \checkmark Origin and mechanisms of γ -ray bursts
- ✓ Internal structure of neutron stars


- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Need for accurate template waveforms


If the expected signal is *known in advance* then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow **template waveforms**

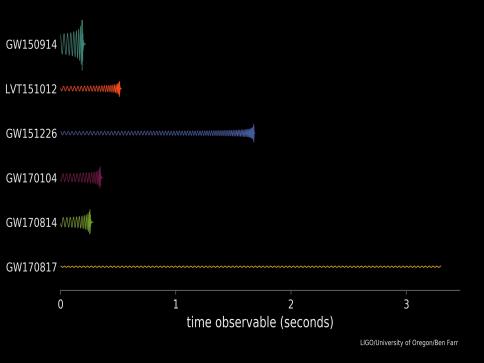
Need for accurate template waveforms

If the expected signal is *known in advance* then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow **template waveforms**

A recent example: the event GW151226

A long inspiral to merger to ringdown

Outline

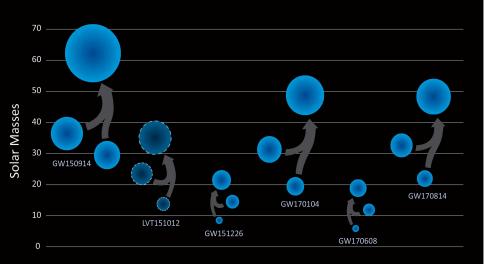

1 Introduction

2 The present

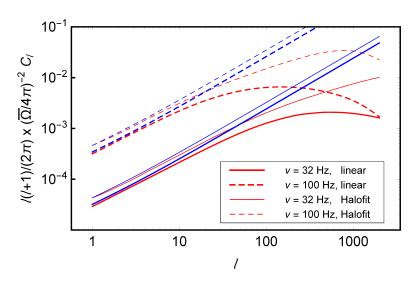
The future

Ground-based interferometric detectors

Fundamental physics


- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

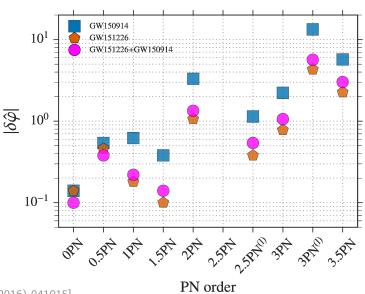

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Black Holes of Known Mass

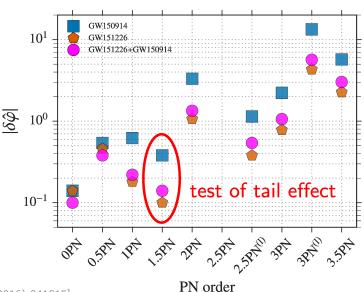
Angular power spectrum of AGWB

Fundamental physics

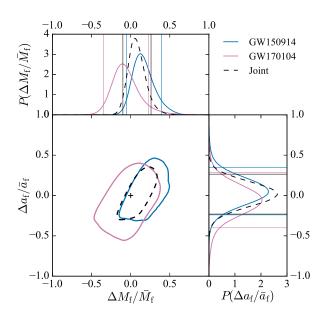

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars


- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Measurement of PN parameters

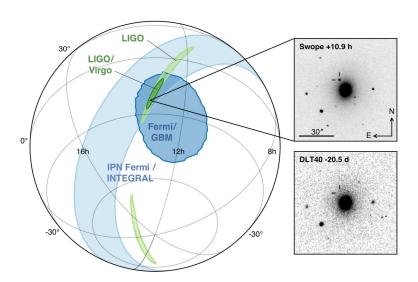

[PRX 6 (2016) 041015]

Measurement of PN parameters

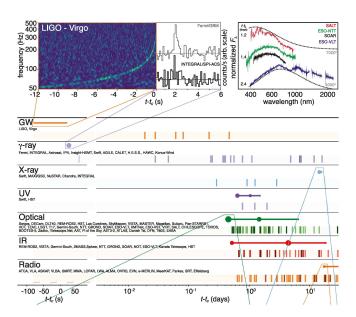
[PRX 6 (2016) 041015]

IMR consistency tests

Fundamental physics


- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

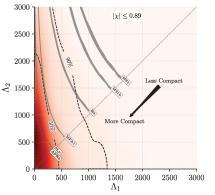

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

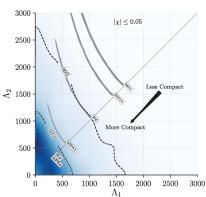
- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

[ApJ 848 (2017) L12] A binary neutron star merger

Multi-messenger astronomy

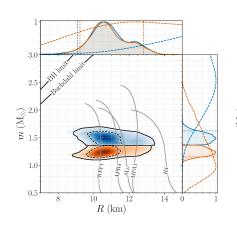
Fundamental physics

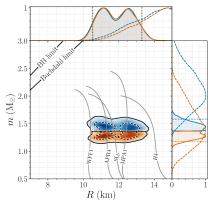

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity


Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

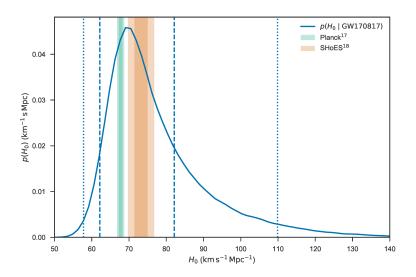

Tidal deformability



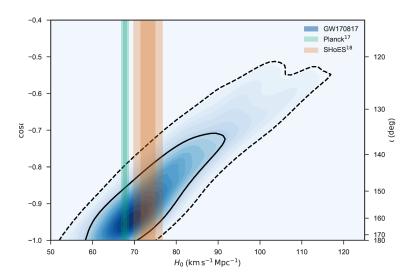
$$\Lambda_i \propto \left(\frac{c^2 R_i}{G m_i}\right)^5$$

Mass, radius and EOS

Fundamental physics


- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics


- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

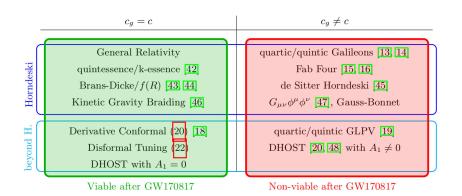
- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Independent measure of Hubble's constant

Independent measure of Hubble's constant

[Nature **551** (2017) 85]

Fundamental physics


- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

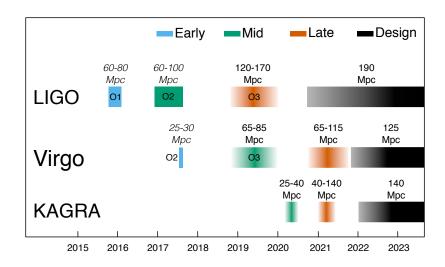
Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

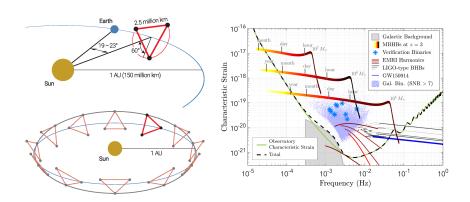
- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Falsifying many scalar-tensor theories

$$|c_g/c - 1| < 10^{-15}$$

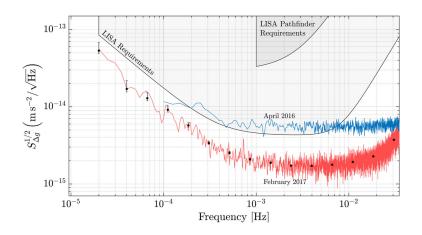

Outline

1 Introduction

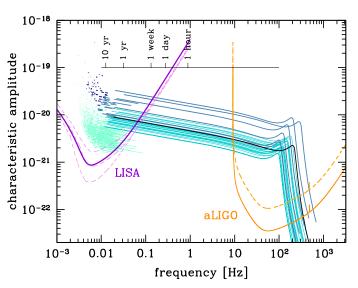

2 The present

3 The future

Roadmap for advanced GW detectors



LISA: a gravitational antenna in space


Science theme *The Gravitational Universe* selected by ESA for L3 mission with a launch planned for 2034 [elisascience.org/whitepaper]

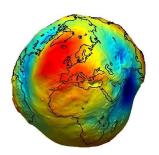
LISA: a gravitational antenna in space

ESA's LISA Pathfinder mission has demonstrated the technology needed to build a space-based observatory [PRL 120 (2018) 061101]

Multi-band gravitational wave astronomy

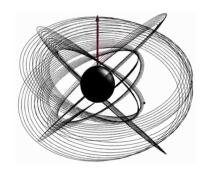
Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity


Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

- Cosmography and measure of Hubble's constant
- · Origin and growth of supermassive black holes
- Phase transitions during primordial Universe


Do black holes have hair?

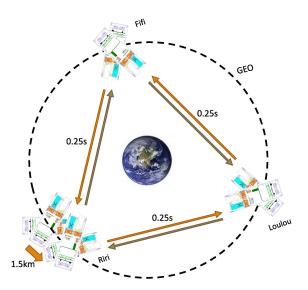
Geodesy

 M_ℓ arbitrary

Botriomeladesy

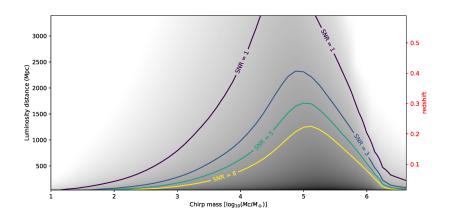
$$M_{\ell} + iS_{\ell} = M(ia)^{\ell}$$

Fundamental physics

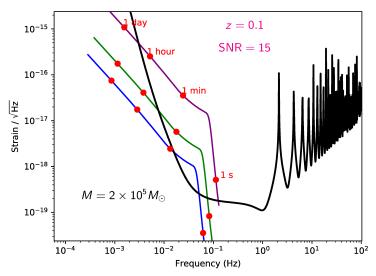

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- · Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars


- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

SAGE: finding IMBH in the black hole desert


[Lacour et al. (in preparation)]

SAGE: finding IMBH in the black hole desert

[Lacour et al. (in preparation)]

SAGE: finding IMBH in the black hole desert

[Lacour et al. (in preparation)]