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The black hole uniqueness theorem in GR
[Israel 1967, Carter 1971, Hawking 1973, Robinson 1975]

• The only stationary vacuum black hole solution is the Kerr
solution of mass M and angular momentum S

“Black holes have no hair.” (J. A. Wheeler)

• Black hole event horizon
H characterized by:

◦ Angular velocity ωH

◦ Surface gravity κ

◦ Surface area A M,S
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The laws of black hole mechanics
[Hawking 1972, Bardeen, Carter & Hawking 1973]

• Zeroth law of mechanics:

κ = const. (on H)

• First law of mechanics:

δM = ωH δS +
κ

8π
δA

• Second law of mechanics:

δA ≥ 0

M,S
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What is the horizon surface gravity?

• For an event horizon H generated by a Killing field kα:

κ2 ≡ 1
2 (∇αkβ∇βkα)

∣∣
H

• For a Schwarzschild black hole of mass M, this yields

κ =
1

4M
=

GM

R2
S
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Beyond stationary, isolated black holes

Why?

• Astrophysical black holes are neither perfectly isolated,
nor strictly stationary

• Of special interest are black holes that interact gravitationally
with a companion in a compact binary system

How?
• Isolated, slowly evolving, or dynamical horizons (quasi-local)

• Physical setup that guarantees the existence of an isometry

• Perturbative treatment of the problem: large separation,
large mass ratio, weak tidal environment
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Outline

1 Circular-orbit binaries: geometrical methods

2 Beyond circular motion: Hamiltonian methods

3 Applications of the first law of binary mechanics
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Zeroth law of binary black hole mechanics
[Friedman, Uryū & Shibata 2002]

• Black hole spacetimes with helical Killing vector field kα

• On each component Ha of the event horizon, the expansion
and shear of the generators vanish

• Generalized rigidity theorem:
H =

⋃
aHa is a Killing horizon

• Constant horizon surface gravity

κ2
a = 1

2 (∇αkβ∇βkα)
∣∣
Ha

• The binary black hole system
is in a state of corotation
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First laws of compact binary mechanics
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δM − ωH δS =
κ

8π
δA

δM − Ω δJ =
∑
a

κa
8π

δAa

δM − Ω δJ =
∑
a

za δma

δM−Ω δJ =
κ

8π
δA+z δm

test
[Bardeen et al. 1973]

[Friedman et al. 2002]

[Le Tiec et al. 2012]

[Blanchet et al. 2013]

[Gralla & Le Tiec 2013]
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Surface gravity and redshift variable
[Pound 2015]
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(Credit: Zimmerman, Lewis & Pfeiffer 2016)



Surface gravity vs orbital frequency
[Le Tiec & Grandclément 2018]
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Surface gravity vs orbital frequency
[Le Tiec & Grandclément 2018]
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Perturbation theory for comparable masses
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Perturbation theory for comparable masses

Relativistic orbital dynamics

• Periastron advance [Le Tiec et al. 2011; 2013]

• Binding energy [Le Tiec, Buonanno & Barausse 2012]

• Surface gravity [Zimmerman et al. 2016; Le Tiec & Grandclément 2018]

Gravitational-wave emission

• Recoil velocity [Fitchett & Detweiler 1984; Nagar 2013]

• Head-on waveform [Anninos et al. 1995; Sperhake et al. 2011]

• Inspiral phasing [van de Meent & Pfeiffer 2020; Wardell et al. 2021]

• Inspiral energy flux [Warburton et al. 2021]
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Perturbation theory for comparable masses
[van de Meent & Pfeiffer 2020]
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q = m1/m2

↓
ν = m1m2/m
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Multipolar gravitational skeleton
[Mathisson 1937; Tulczyjew 1957]

Tαβ → Tαβ
skel =

∫
γ
dτ
[
T αβ δ4︸ ︷︷ ︸
monopole

+∇ρ (T αβρ δ4)︸ ︷︷ ︸
dipole

+ · · ·
]
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Quadrupolar particles on a circular orbit
[Ramond & Le Tiec 2022]

• Helical Killing field kα so that

Lkgαβ = 0

• Each particle worldline γ is an
integral curve of kα:

kα|γ = z uα

• The particle multipoles are all
Lie-dragged along kα:

Lkpα = LkSαβ = LkQαβρσ = 0
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First law with finite-size effects
[Ramond & Le Tiec 2022]

Ω
m1

δM − Ω δJ =
∑
a

|k|a δma

−
∑
a

δSa +
∑
a

δQa

• Spin-induced quadrupole Qspin ∼ κS2

• Tidally-induced quadrupole Qtidal ∼ λE
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Ṡa = Ωa × Sa



First law with finite-size effects
[Ramond & Le Tiec 2022]

Ω
m1,S1

δM − Ω δJ =
∑
a

za δma −
∑
a

|∇k|a δSa

+
∑
a

δQa

• Spin-induced quadrupole Qspin ∼ κS2

• Tidally-induced quadrupole Qtidal ∼ λE

University of Leipzig June 7, 2022

z1
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First law with finite-size effects
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Tidal deformability of Kerr black holes
[Le Tiec, Casals & Franzin 2021]

Qspin
ij = −S〈iSj〉/M and Qtidal

ij =
16

45
M3Ek(iεj)klS

l

Consistent with known tidal torquing of spinning black holes
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Averaged redshift for eccentric orbits
[Barack & Sago 2011]

• Generic eccentric orbit parameterized
by the two requencies

Ωr =
2π

P
, Ωφ =

Φ

P

• Time average of redshift z = dτ/dt
over one radial period

〈z〉 ≡ 1

P

∫ P

0
z(t) dt =

1

P

∫ T
0

dτ =
T
P

m
2

m
1

 t = 0
 = 0

 t = P
 = T
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First law of mechanics for eccentric orbits
[Le Tiec 2015; Blanchet & Le Tiec 2017]

• Canonical ADM Hamiltonian H(xa, pa;ma) of two point
particles with constant masses ma

• Variation δH + Hamilton’s equation + orbital averaging:

δM = Ωφ δL + Ωr δJr +
∑
a

〈za〉 δma

• Starting at 4PN order the binary dynamics gets nonlocal
in time because of gravitational-wave tails:

H4PN
tail [xa(t), pa(t)] = −M

5
I

(3)
ij (t) Pf

2r

∫ +∞

−∞

dτ

τ
I

(3)
ij (t + τ)

• With appropriate M, L and Jr the first law still holds

University of Leipzig June 7, 2022



Particle Hamiltonian first law

• Geodesic motion of test mass m in Kerr geometry ḡαβ derives
from Hamiltonian

H̄(x , p) =
1

2
ḡαβ(xµ)pαpβ

• Hamilton-Jacobi equation is completely separable [Carter 1968]

• Canonical transformation (xµ, pµ)→ (qα, Jα) to generalized
action-angle variables [Schmidt 2002; Hinderer & Flanagan 2008]

dJα
dτ

= − ∂H̄
∂qα

= 0 ,
dqα

dτ
=
∂H̄

∂Jα
≡ ωα

• Varying H̄(Jα) yields a particle Hamiltonian first law valid for
generic bound orbits [Le Tiec 2014]

δE = Ωφ δL + Ωr δJr + Ωθ δJθ + 〈z〉 δm
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Including conservative self-force effects
[Fujita et al. 2017; Blanco & Flanagan 2022]

• Geodesic motion of self-gravitating mass m in effective metric
ḡαβ + hR

αβ derives from Hamiltonian

H(x , p; γ) = H̄(x , p) + Hint(x , p; γ)

• In class of canonical gauges, one can define a unique effective
Hamiltonian H(J) = H̄(J) + 1

2〈Hint〉(J) yielding a first law
valid for generic bound orbits:

δE = Ωφ δL+ Ωr δJr + Ωθ δJθ + 〈z〉 δm

• The actions Jα and the averaged redshift 〈z〉, as functions of
(Ωr ,Ωθ,Ωφ), include conservative self-force corrections from
the gauge-invariant averaged interaction Hamiltonian 〈Hint〉
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ḡαβ + hR

αβ derives from Hamiltonian

H(x , p; γ) = H̄(x , p) + Hint(x , p; γ)

• In class of canonical gauges, one can define a unique effective
Hamiltonian H(J) = H̄(J) + 1

2〈Hint〉(J) yielding a first law
valid for generic bound orbits:

δE = Ωφ δL+ Ωr δJr + Ωθ δJθ + 〈z〉 δm

• The actions Jα and the averaged redshift 〈z〉, as functions of
(Ωr ,Ωθ,Ωφ), include conservative self-force corrections from
the gauge-invariant averaged interaction Hamiltonian 〈Hint〉

University of Leipzig June 7, 2022



Outline

1 Circular-orbit binaries: geometrical methods

2 Beyond circular motion: Hamiltonian methods

3 Applications of the first law of binary mechanics

University of Leipzig June 7, 2022



Applications of the first laws
• Fix ‘ambiguity parameters’ in 4PN two-body equations of motion

[Jaranowski & Schäfer 2012; Damour et al. 2014; Bernard et al. 2016]

• Inform the 5PN two-body Hamiltonian in a ‘tutti-frutti’ method
[Bini, Damour & Geralico 2019; 2020]

• Compute GSF contributions to energy and angular momentum
[Le Tiec, Barausse & Buonanno 2012]

• Calculate Schwarzschild and Kerr ISCO frequency shifts
[Le Tiec et al. 2012; Akcay et al. 2012; Isoyama et al. 2014]

• Test cosmic censorship conjecture including GSF effects
[Colleoni & Barack 2015; Colleoni et al. 2015]

• Calibrate EOB potentials in effective Hamiltonian
[Barausse et al. 2012; Akcay & van de Meent 2016; Bini et al. 2016]

• Compare particle redshift to black hole surface gravity
[Zimmerman et al. 2016; Le Tiec & Grandclément 2018; Albalat et al. 2022]

• Benchmark for calculations of Schwarzschild IBCO frequency shift and
gravitational binding energy [Barack et al. 2019; Pound et al. 2020]
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Innermost stable circular orbit (ISCO)
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Frequency shift of the Kerr ISCO
[Isoyama, Barack, Dolan, Le Tiec et al. 2014]

• The orbital frequency of the Kerr ISCO is shifted under the
effect of the conservative self-force:

(M + µ)Ωisco = MΩ
(0)
isco(χ)︸ ︷︷ ︸

test mass
result

[
1 + q CΩ(χ)︸ ︷︷ ︸

self-force
correction

+ O(q2)
]

• The frequency shift can be computed from a stability analysis
of slightly eccentric orbits near the Kerr ISCO

• Combining the Hamiltonian first law with the condition
∂E/∂Ω = 0 yields the same result:

CΩ = 1 +
1

2

z ′′(1)(Ω
(0)
isco)

Ê ′′(0)(Ω
(0)
isco)
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ISCO frequency shift vs black hole spin
[Isoyama, Barack, Dolan, Le Tiec et al. 2014]
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ISCO frequency shift vs black hole spin
[van de Meent 2017]
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Innermost bound orbit in Schwarzschild
[Barack, Colleoni, Damour, Isoyama & Sago 2019]
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IBCO frequency shift in Schwarzschild
[Barack, Colleoni, Damour, Isoyama & Sago 2019]

Direct self-force calculation

ΩIBCO = (8M)−1
[
1 + 0.5536(2) q + O(q2)

]
JIBCO = 4Mµ

[
1− 0.304(3) q + O(q2)

]
First-law prediction

ΩIBCO = (8M)−1
[
1 + 0.55360302918(2) q + O(q2)

]
JIBCO = 4Mµ

[
1− 0.304674287863142(6) q + O(q2)

]
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Second-order self-force program

• Second-order gravitational self-force
A. Pound, PRL 109 (2012) 051101

• Practical, covariant puncture for second-order self-force calculations
A. Pound & J. Miller, PRD 89 (2014) 104020

• Second-order perturbation theory: Problems on large scales
A. Pound, PRD 92 (2015) 104047

• Second-order perturbation theory: The problem of infinite mode coupling
J. Miller, B. Wardell & A. Pound, PRD 94 (2016) 104018

• Nonlinear gravitational self-force: Second-order equation of motion
A. Pound, PRD 95 (2017) 104056

• Second-order self-force calculation of gravitational binding energy in compact
binaries
A. Pound, B. Wardell, N. Warburton & J. Miller, PRL 124 (2019) 021101

• Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation
scheme for quasicircular orbits in Schwarzschild spacetime
J. Miller & A. Pound, PRD 103 (2021) 064048

• Gravitational-wave energy flux for compact binaries through second order in the
mass ratio
N. Warburton, A. Pound, B. Wardell et al., PRL 127 (2021) 151102
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Binding energy vs orbital frequency
[Pound, Wardell, Warburton & Miller 2020]
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Flux of energy vs orbital frequency
[Warburton, Pound, Wardell, Miller & Durkan 2021]
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Orbital evolution via energy balance
[Bondi et al. 1962; Sachs 1962]

• Bondi mass-loss formula

dMB

du
= −F(u)

• Gravitational binding energy

E ≡ MB −MBH − µ

• Orbital frequency evolution

dω

dt
= −F(ω)

E ′(ω)
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Gravitational waveforms
[Wardell, Pound, Warburton, Miller, Durkan & Le Tiec 2022]
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Mode waveform amplitudes
[Wardell, Pound, Warburton, Miller, Durkan & Le Tiec 2022]
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Waveforms frequency evolution
[Wardell, Pound, Warburton, Miller, Durkan & Le Tiec 2022]
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Accumulated dephasing
[Wardell, Pound, Warburton, Miller, Durkan & Le Tiec 2022]
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Perturbation theory for comparable masses
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Summary

• The classical laws of black hole mechanics can be extended
to binary systems of compact objects

• First laws of mechanics come in a variety of different forms:

◦ Context: exact GR, self-force theory, PN theory

◦ Objects: black holes, multipolar point particles

◦ Orbits: corotating, circular, eccentric, generic

◦ Derivation: geometric, Hamiltonian

• Combined with the first law, the redshift z(Ω) provides crucial
information about the binary dynamics:

◦ Gravitational binding energy E and angular momentum J

◦ ISCO frequency ΩISCO and IBCO frequency ΩIBCO

◦ EOB effective potentials A, D̄, Q, . . .

◦ Horizon surface gravity κ
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Prospects

• Small-mass-ratio approximation useful to build templates
for IMRIs and even comparable-mass binaries

• Exploit the Hamiltonian first law for a particle in Kerr:

◦ Innermost spherical orbits

◦ Unbound zoom-whirl orbits

• Extend Hamiltonian first law for two spinning particles:

◦ Non-aligned spins and generic precessing orbits

◦ Contribution from quadrupole moments

• Link to unbound orbits and scattering angle via analytic
continuation?

• Derive a first law in post-Minkowskian gravity

• Derive a first law with dissipation
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Additional Material
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Generalized first law of mechanics
[Friedman, Uryū & Shibata 2002]

• Spacetimes with black holes + perfect fluid matter sources

• One-parameter family of solutions {gαβ(λ), uα(λ), ρ(λ), s(λ)}
• Globally defined Killing field kα→ conseved Noether charge Q

δQ =
∑
i

κi
8π

δAi +

∫
Σ

[
h̄ δ(dMb) + T̄ δ(dS) + vαδ(dCα)

]
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Issue of asymptotic flatness
[Friedman, Uryū & Shibata 2002]

• Binaries on circular orbits have a helical Killing symmetry kα

• Helically symmetric spacetimes are not asymptotically flat
[Gibbons & Stewart 1983, Detweiler 1989, Klein 2004]

• Asymptotic flatness can be recovered if radiation (reaction)
can be “turned off”:

◦ Conformal Flatness Condition
◦ Post-Newtonian approximation
◦ Black hole perturbation theory

• For asymptotically flat spacetimes:

kα → tα + Ωφα and δQ = δMADM − Ω δJ
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Application to black hole binaries
[Friedman, Uryū & Shibata 2002]

• Rigidity theorem → black holes are in a state of corotation

• Conformal flatness condition → asymptotic flatness recovered�

preferred normalization of κi [Le Tiec & Grandclément 2018]

• For binary black holes the generalized first law reduces to

δMADM = Ω δJ+
∑
i

κi
8π

δAi Ω

MADM,J

r  +¥  

A1

κ2
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First law for point-particle binaries
[Le Tiec, Blanchet & Whiting 2012]

• For balls of dust, the generalized first law reduces to

δQ =

∫
Σ
z δ(dMb) + · · · , where z = −kαuα

• Conservative PN dynamics → asymptotic flatness recovered

• Two spinless compact objects modelled as point masses mi

and moving along circular orbits obey the first law

δMADM = Ω δJ+
∑
i

zi δmi Ω
r  +¥  

m1

MADM,J

z2
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Extension to spinning binaries
[Blanchet, Buonanno & Le Tiec 2013]

• Canonical ADM Hamiltonian H(xi , pi , Si ;mi ) of two point
particles with masses mi and spins Si [Steinhoff et al. 2008]

• Redshift observables and spin precession frequencies:

∂H

∂mi
= zi and

∂H

∂Si
= Ωi

• First law for aligned spins (J = L +
∑

i Si ) and circular orbits:

δM = Ω δL+
∑
i

(zi δmi + Ωi δSi ) Ω
r  +¥  

MADM,L

m1,S1

z2,Ω2
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Corotating point particles
[Blanchet, Buonanno & Le Tiec 2013]

• A point particle with rest mass mi and spin Si is given an
irreducible mass µi and a proper rotation frequency ωi via

δmi = ωi δSi + ci δµi and m2
i = µ2

i + S2
i /(4µ2

i )

• The first law of binary point-particle mechanics becomes

δM = Ω δJ +
∑
i

[zici δµi + (zi ωi + Ωi − Ω) δSi ]

• Comparing with the first law for corotating black holes,
δM = Ω δJ +

∑
i (4µiκi ) δµi , the corotation condition is

zi ωi = Ω− Ωi −→ ωi (Ω) −→ Si (Ω)
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Surface gravity and redshift
[Blanchet, Buonanno & Le Tiec 2013]

• First law for corotating black holes

δM = Ω δJ +
∑
i

(4µiκi ) δµi

• First law for corotating point particles

δM = Ω δJ +
∑
i

zici δµi

• Analogy between BH surface
gravity and particle redshift

4µiκi ←→ zici κi
zi

μi

• New invariant relations for NR/BHP/PN comparison: κi (Ω)
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Redshift vs orbital frequency
[Zimmerman, Lewis & Pfeiffer 2016]
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Redshift vs orbital frequency
[Zimmerman, Lewis & Pfeiffer 2016]
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Quasi-equilibrium initial data

• 3+1 decomposition of the metric:

ds2 = −N2dt2 + γij
(
dx i + N idt

) (
dx j + N jdt

)
• Conformal flatness condition approximation:

γij = Ψ4fij +��hij

• Assume exact helical Killing symmetry:

Lk gαβ = 0 with kα = (∂t)
α + Ω (∂φ)α

• Solve five elliptic equations for (N,N i ,Ψ)

• Determine orbital frequency Ω by imposing

MADM = MKomar

• Impose vanishing linear momentum to find rotation axis
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Surface gravity for mass ratio 2 : 1

Surface gravity (arbitrary units)

University of Leipzig June 7, 2022



Surface gravity for mass ratio 2 : 1

Relative variations in surface gravity
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Variations in horizon surface gravity
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Rotating black hole + orbiting moon

• Kerr black hole of mass M and spin S
perturbed by a moon of mass m� M:

gab(ε) = ḡab + εDgab +O(ε2)

ωH
E,L

M,S

m

• Perturbation Dgab obeys the linearized Einstein equation
with point-particle source

DGab = 8πDTab = 8πm

∫
γ
dτ δ4(x , y) uaub

• Particle has energy E = −m taua and ang. mom. L = m φaua

• Physical Dgab: retarded solution, no incoming radiation,
perturbations DMB = E and DJ = L [Keidl et al. 2010]
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Rotating black hole + corotating moon

• We choose for the geodesic γ the unique equatorial, circular
orbit with azimuthal frequency ω̄H , i.e., the corotating orbit

• Gravitational radiation-reaction is O(ε2) and neglected
The spacetime geometry has a helical symmetry

• In adapted coordinates, the
helical Killing field reads

χa = ta + ω̄H φ
a

• Conserved orbital quantity
associated with symmetry:

z ≡ −χaua = m−1 (E − ω̄H L)

ua

2π/ωH χa

γ

Σ

University of Leipzig June 7, 2022



Zeroth law for a black hole with moon
[Gralla & Le Tiec 2013]

• Because of helical symmetry and corotation, the expansion
and shear of the perturbed future event horizon H vanish

• Rigidity theorems then imply that H is a Killing horizon
[Hawking 1972, Chruściel 1997, Friedrich et al. 1999, etc]

• The horizon-generating Killing field must be of the form

ka(ε) = ta +
(
ω̄H + εDωH︸ ︷︷ ︸

circular orbit
frequency Ω

)
φa +O(ε2)

• The surface gravity κ is defined in the usual manner as

κ2 = −1

2
(∇akb∇akb)|H

• Since κ = const. over any Killing horizon [Bardeen et al. 1973],
we have proven a zeroth law for the perturbed event horizon
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Angular velocity vs black hole spin
[Gralla & Le Tiec 2013]
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Surface gravity vs black hole spin
[Gralla & Le Tiec 2013]
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First law for a black hole with moon
[Gralla & Le Tiec 2013]

• Adapting [Iyer & Wald 1994] to non-vacuum perturbations of
non-stationary spacetimes we find (with Qab ≡ −εabcd∇ckd)∫
∂Σ

(δQab −Θabck
c) = 2 δ

∫
Σ
εabcdG

deke−
∫

Σ
εabcdk

dG ef δgef

• Applied to nearby BH with moon
spacetimes, this gives the first law

δMB = Ω δJ +
κ

8π
δA + z δm

• Features variations of the Bondi
mass and angular momentum

i0

i +

i −

H Σ

H

ka

ka S

γ

B

I +

ka

ua
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Binding energy vs angular momentum
[Le Tiec, Barausse & Buonanno 2012]
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Why does BHPT perform so well?

• In perturbation theory, one traditionally expands as

f (Ω;mi ) =
kmax∑
k=0

ak(m2Ω) qk where q ≡ m1/m2 ∈ [0, 1]

• However, most physically interesting relationships f (Ω;mi ) are
symmetric under exchange m1 ←→ m2

• Hence, a better-motivated expansion is

f (Ω;mi ) =
kmax∑
k=0

bk(mΩ) νk where ν ≡ m1m2/m
2 ∈ [0, 1/4]

• In a PN expansion, we have bn = O
(
1/c2n

)
= nPN + · · ·
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Why does BHPT perform so well?

• In perturbation theory, each surface gravity is expanded as

4µ1κ1 = a(µ2Ω) + q b(µ2Ω) +O(q2)

4µ2κ2 = c(µ2Ω) + q d(µ2Ω) +O(q2)

• From the first law we know that the general form is

4µiκi =
∑
k>0

νk fk(µΩ) ±
√

1− 4ν
∑
k>0

νkgk(µΩ)

• Each surface gravity can thus be rewritten as

4µiκi = A(µΩ) ± B(µΩ)
√

1− 4ν + C (µΩ) ν

± D(µΩ) ν
√

1− 4ν +O(ν2)

• Expand to linear order in q and match → A, B, C , D
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EOB dynamics beyond circular motion

m
2

m
1
+ m

2


EOB

m
1

H H  
 
(A,D,Q)real eff

• Conservative EOB dynamics determined by “potentials”

A(r) = 1− 2M/r + ν a(r) + · · ·
D̄(r) = 1 + ν d̄(r) + · · ·
Q(r) = ν q(r) p4

r + · · ·

• Functions a(r), d̄(r) and q(r) controlled by 〈z〉GSF(Ωr ,Ωφ)
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EOB dynamics beyond circular motion
[Akcay & van de Meent 2016]

Numerical
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EOB dynamics beyond circular motion
[Akcay & van de Meent 2016]

Numerical
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EOB dynamics for spinning bodies
[Bini, Damour & Geralico 2016]

First law for spinning bodies

GSF contribution to redshift

}
=⇒ SO coupling function δGS(u, â)
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