Recent developments on gravitational-wave science

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

The gravitational-wave spectrum

Ground-based interferometric detectors

Roadmap for ground-based detectors

[LRR 23 (2020) 3]

Current gravitational-wave detections

[LIGO-P2000318 (2021)]

OBSERVING OT RUN			02					No. of Concession	03a+b			
2015 - 2016			2016 - 2017	- ants	and the second	and the	1000	1			2019 - 2020	
36 31	23 14	14 77	31 20	11 76	50 JA	15 PA	37 25	 15 13	35 27	40 29	88 22	25 18
63 CW150914	36 cw151012	21 CM19226	49 GW70104	18 cw170608	80 cwmm29	56 cwr70e09	53 GW/70816	≤2.8 GW/70877	60 GW/70818	65 CW170823	105 GW90403,05159	41 CW190428.383602
30 83	35 24	48 32	41 32	• • • 2 • 14	NI 71	43 28	23 U	36 18	30 28	37 25	66 A	95
37 00/1904/2	56 GW190413_052964	76 CW190403_154308	70 cw/190427_213856	3.2 cw150425	175 cw190426_190642	69 CW190503_385404	35 CW190672_380774	52 cw190533_205428	65 GW/90516_065416	59 GW190577_065101	101 GW190619_163544	156 GW190521
42 33	37 23		57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7,8	12 6.4	38 29
71 cwmcca1_074359	56 CW190527_092065	111 GW790600_775927	87 CW190620_030421	56 crw/90630_185205	90 cw180701_203306	99 cw190706_222641	19 CW190707_083326	30 GW190708_232467	55 GW190779_25554	20 cw180720_000836	17 GW190725_174728	64 GW780727_060333
12 вл	42 29	37 27	48 32	23 26	32 26	24 10	44 36	35 24	44 24	93 21	89 S	21 16
20 CW150728_064510	67 CW130733_W0836	62 CW190803_022701	76 GW780605_211137	26 GW20814	55 cw150828_063405	33 cw/20828_065500	76 cw190910_112807	57 GW790915_235702	66 CW790066_200658	11 CW150277_TH4630	13 GW790024_021846	35 GW790005_232846
40 23	91 24	12 7.8			65 47	29 59	12 8.3	53 24	11 67	27 19	12 8.2	25 18
61 CW1109205_C603335	102 CW190929_012149	19 CW150330_133541	19 GW12TT03_012549	18 GW199105_143521	107 cwrance.cno777	34 GW101113_077753	20 GW787126, T5250	76 CW191127, 0560227	17 GW197129,154029	45 CW196204_110529	19 CW19/204_17526	41 cw198215, 223062
	31 12	45 35	49 57	9 1.9	36 28		42 55	34 29	10 7.3	38 27	5 U	96 Z7
19 GW191298-203358	32 cwarze.wszco	76 cw19/222.035537	82 CW191250_180458	11 CW200105.362426	61 cw2cott2.155838	7.2 cw20075.042309	71 GW200128,022011	60 GW200123.085458	17 GW200202,194313	63 GW200208.190177	61 GW200208,222877	60 cw200009.065462
24 2.8	51 50	38 28	87	39 28	40 55	19 14	38 20	28 15	36 W	34 28		34 14
27 cw200210.092254	78 GW200216_220804	62 GW200279.094415	141 CW200220.061928	64 cw200220.124850	69 0w200224.222234	32 GW200225.090431	56 cw200302_015811	42 GW200306.099714	47 GW203308.173909	59 GW200311_113853	20 GW200396_255756	53 GW200322.09/133

Areas the the mean outwards drawn here is not include constantian, which is also the final mean constantiants topological building of the constantiant of the constantiant of the final means that the mean of the constantiant of the constantiant of the constantiant of the constant of the constant of the constantiant of the the constantiant of the constantiant of the constantiant of the constantiant of the constant of the constantiant of the

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Consistency test for final mass and spin

 $\Phi(f) \propto \sum_{i=-2}^7 \varphi_i f^{(i-5)/3}$

wave tail

Null test for Kerr black hole ringdown

[PRD 103 (2021) 122002]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Falsifying scalar-tensor theories

$$|c_g/c - 1| < 10^{-15}$$

[PRL 119 (2017) 251304]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Isotropic gravitational-wave background

[PRD 104 (2021) 022004]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Independent measure of Hubble's constant

Evolution of the Hubble parameter

[LIGO-P2100185 (2021)]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Constraints on cosmic strings

[PRL 126 (2021) 241102]

LISA: a gravitational antenna in space

The *LISA mission* proposal was accepted by ESA in 2017 for L3 slot, with a launch planned for 2034 [http://www.lisamission.org]

LISA sources of gravitational waves

Multi-band gravitational-wave astronomy

[PRL 116 (2016) 231102]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Do black holes have hair?

Geodesy

Botromeladesy

 $M_\ell + iS_\ell = M(ia)^\ell$

 M_ℓ arbitrary

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

How do massive black holes form?

Systematic uncertainties in modeling IMRIs

The mass ratio of GW191219_163120's source is inferred to be $q = 0.038^{+0.005}_{-0.004}$, which is extremely challenging for waveform modeling, and thus there may be systematic uncertainties in results for this candidate.

Modeling of higher-order multipole moments is particularly important for inferring the properties of systems with unequal masses, and may impact inference of parameters including the mass ratio, inclination and distance.

[LIGO-P2000318 (2021)]

Perturbation theory for comparable masses

[PRL 125 (2020) 181101]

Gravitational waveforms

Mode waveform amplitudes

Waveforms frequency evolution

Accumulated dephasing

