Tidal Love numbers of Kerr black holes

Alexandre Le Tiec

Laboratoire Univers et Théories
Observatoire de Paris / CNRS

Collaborators: M. Casals \& E. Franzin
Submitted to PRL, gr-qc/2007.00214

Newtonian theory of Love numbers

$$
U=\frac{M}{r}
$$

Newtonian theory of Love numbers

$$
U=\frac{M}{r}-\frac{1}{2} x^{a} x^{b} \mathcal{E}_{a b}
$$

Newtonian theory of Love numbers

$$
U=\frac{M}{r}-\frac{1}{2} x^{a} x^{b} \mathcal{E}_{a b}+\frac{3}{2} \frac{x^{a} x^{b} Q_{a b}}{r^{5}}
$$

Newtonian theory of Love numbers

$$
U=\frac{M}{r}-\frac{1}{2} x^{a} x^{b} \mathcal{E}_{a b}+\frac{3}{2} \frac{x^{a} x^{b} Q_{a b}}{r^{5}}
$$

Newtonian theory of Love numbers

$$
U=\frac{M}{r}-\frac{1}{2} x^{a} x^{b} \mathcal{E}_{a b}+\frac{3}{2} \frac{x^{a} x^{b} Q_{a b}}{r^{5}}
$$

Newtonian theory of Love numbers

$$
U=\frac{M}{r}-\frac{1}{2} x^{2} x^{b} \varepsilon_{a b}\left[1+2 k_{2}\left(\frac{R}{r}\right)^{5}\right]
$$

Newtonian theory of Love numbers

Newtonian theory of Love numbers

Newtonian theory of Love numbers

$$
\psi_{0}=\sum_{\ell \geqslant 2} \sum_{|m| \leqslant \ell} \sqrt{\frac{(\ell+2)(\ell+1)}{\ell(\ell-1)}} r^{\ell-2} \mathcal{E}_{\ell m}\left[1+2 k_{\ell}\left(\frac{R}{r}\right)^{2 \ell+1}\right]{ }_{2} Y_{\ell m}
$$

Newtonian theory of Love numbers

$$
\psi_{0}=\sum_{\ell \geqslant 2} \sum_{|m| \leqslant \ell} \sqrt{\frac{(\ell+2)(\ell+1)}{\ell(\ell-1)}} r^{\ell-2} \mathcal{E}_{\ell m}\left[1+2 k_{\ell m}\left(\frac{R}{r}\right)^{2 \ell+1}\right]{ }_{2} Y_{\ell m}
$$

Newtonian theory of Love numbers

$$
\begin{gathered}
\begin{array}{c}
Q_{a b}=\lambda_{2} \mathcal{E}_{a b} \\
=-\frac{2}{3} k_{2} R^{5} \mathcal{E}_{a b}
\end{array} \mathcal{E}_{a b}=-\partial_{a} \partial_{b} U_{\text {ext }}(\mathbf{0}) \\
\psi_{0}=\sum_{\ell \geqslant 2} \sum_{|m| \leqslant \ell} \sqrt{\frac{(\ell+2)(\ell+1)}{\ell(\ell-1)}} r^{\ell-2} \mathcal{E}_{\ell m}\left[1+2 k_{\ell m}\left(\frac{R}{r}\right)^{2 \ell+1}\right]{ }_{2} Y_{\ell m} \\
k_{\ell m}=k_{\ell}^{(0)}+i m \chi k_{\ell}^{(1)}+O\left(\chi^{2}\right)
\end{gathered}
$$

Newtonian theory of Love numbers

$$
\begin{aligned}
& R \underbrace{}_{a b}=\lambda_{2} \mathcal{E}_{a b} \\
& =-\frac{2}{3} k_{2} R^{5} \mathcal{E}_{a b}
\end{aligned} \underbrace{\mathcal{E}_{a b}=-\partial_{a} \partial_{b} U_{\text {ext }}(\mathbf{0})}
$$

Tidal Love numbers $k_{\ell m} \longleftrightarrow$ body's internal structure

Internal structure of neutron stars

GW observations as probes of neutron star internal structure

Relativistic theory of Love numbers

- Electric-type and magnetic-type tidal moments:

$$
\mathcal{E}_{L} \propto \hat{C}_{0 a_{1} a_{2} ; a_{3} \cdots a_{\ell}} \quad \text { and } \quad \mathcal{B}_{L} \propto \varepsilon_{a_{1} b c} \hat{C}_{a_{2} 0 b c ; a_{3} \cdots a_{\ell}}
$$

Relativistic theory of Love numbers

- Electric-type and magnetic-type tidal moments:

$$
\mathcal{E}_{L} \propto \hat{C}_{0 a_{1} 0 a_{2} ; a_{3} \cdots a_{\ell}} \quad \text { and } \quad \mathcal{B}_{L} \propto \varepsilon_{a_{1} b c} \hat{C}_{a_{2} 0 b c ; a_{3} \cdots a_{\ell}}
$$

- Metric and Geroch-Hansen multipole moments:

$$
g_{\alpha \beta}=\stackrel{\circ}{o}_{\alpha \beta}+\underbrace{h_{\alpha \beta}^{\text {tidal }}}_{\sim r^{\ell}}+\underbrace{h_{\alpha \beta}^{\text {resp }}}_{\sim r^{-(\ell+1)}} \longrightarrow\left\{\begin{array}{l}
M_{L}=\dot{M}_{L}+\delta M_{L} \\
S_{L}=\dot{S}_{L}+\delta S_{L}
\end{array}\right.
$$

Relativistic theory of Love numbers

- Electric-type and magnetic-type tidal moments:

$$
\mathcal{E}_{L} \propto \hat{C}_{0 a_{1} 0 a_{2} ; a_{3} \cdots a_{\ell}} \quad \text { and } \quad \mathcal{B}_{L} \propto \varepsilon_{a_{1} b c} \hat{C}_{a_{2} 0 b c ; a_{3} \cdots a_{\ell}}
$$

- Metric and Geroch-Hansen multipole moments:

$$
g_{\alpha \beta}=\stackrel{\circ}{o}_{\alpha \beta}+\underbrace{h_{\alpha \beta}^{\text {tidal }}}_{\sim r^{\ell}}+\underbrace{h_{\alpha \beta}^{\text {resp }}}_{\sim r^{-(\ell+1)}} \longrightarrow\left\{\begin{array}{l}
M_{L}=\dot{M}_{L}+\delta M_{L} \\
S_{L}=\dot{S}_{L}+\delta S_{L}
\end{array}\right.
$$

- Two families of tidal deformability parameters:

$$
\delta M_{L}=\lambda_{\ell}^{\mathrm{e}} \mathcal{E}_{L} \quad \text { and } \quad \delta S_{L}=\lambda_{\ell}^{\operatorname{mag}} \mathcal{B}_{L}
$$

Relativistic theory of Love numbers

- Electric-type and magnetic-type tidal moments:

$$
\mathcal{E}_{L} \propto \hat{C}_{0 a_{1} 0 a_{2} ; a_{3} \cdots a_{\ell}} \quad \text { and } \quad \mathcal{B}_{L} \propto \varepsilon_{a_{1} b c} \hat{C}_{a_{2} 0 b c ; a_{3} \cdots a_{\ell}}
$$

- Metric and Geroch-Hansen multipole moments:

$$
g_{\alpha \beta}=\stackrel{\circ}{o}_{\alpha \beta}+\underbrace{h_{\alpha \beta}^{\text {tidal }}}_{\sim r^{\ell}}+\underbrace{h_{\alpha \beta}^{\text {resp }}}_{\sim r^{-(\ell+1)}} \longrightarrow\left\{\begin{array}{l}
M_{L}=\dot{M}_{L}+\delta M_{L} \\
S_{L}=\dot{S}_{L}+\delta S_{L}
\end{array}\right.
$$

- Two families of tidal deformability parameters:

$$
\delta M_{L}=\lambda_{\ell}^{\mathrm{e}} \mathcal{E}_{L} \quad \text { and } \quad \delta S_{L}=\lambda_{\ell}^{\mathrm{mag}} \mathcal{B}_{L}
$$

- Dimensionless tidal Love numbers:

$$
k_{\ell}^{\mathrm{el} / \mathrm{mag}} \equiv-\frac{(2 \ell-1)!!}{2(\ell-2)!} \frac{\lambda_{\ell}^{\mathrm{el} / \mathrm{mag}}}{R^{2 \ell+1}}
$$

Love numbers of spinning compact objects

- The spin breaks the spherical symmetry of the background
- No proportionality between ($\left.\delta M_{L}, \delta S_{L}\right)$ and $\left(\mathcal{E}_{L}, \mathcal{B}_{L}\right)$
- Degeneracy of the azimuthal number m lifted
- Parity mixing and mode couplings allowed

Love numbers of spinning compact objects

- The spin breaks the spherical symmetry of the background
- No proportionality between ($\left.\delta M_{L}, \delta S_{L}\right)$ and $\left(\mathcal{E}_{L}, \mathcal{B}_{L}\right)$
- Degeneracy of the azimuthal number m lifted
- Parity mixing and mode couplings allowed
- Metric and Geroch-Hansen multipole moments:

$$
g_{\alpha \beta}=\stackrel{\circ}{g}_{\alpha \beta}+\underbrace{h_{\alpha \beta}^{\text {tidal }}}_{\sim r^{\ell}}+\underbrace{h_{\alpha \beta}^{\text {resp }}}_{\sim r^{(\ell+1)}} \longrightarrow\left\{\begin{array}{l}
M_{\ell m}=\dot{M}_{\ell m}+\delta M_{\ell m} \\
S_{\ell m}=\stackrel{\circ}{S}_{\ell m}+\delta S_{\ell m}
\end{array}\right.
$$

Love numbers of spinning compact objects

- The spin breaks the spherical symmetry of the background
- No proportionality between ($\left.\delta M_{L}, \delta S_{L}\right)$ and $\left(\mathcal{E}_{L}, \mathcal{B}_{L}\right)$
- Degeneracy of the azimuthal number m lifted
- Parity mixing and mode couplings allowed
- Metric and Geroch-Hansen multipole moments:

$$
g_{\alpha \beta}=\stackrel{\circ}{g}_{\alpha \beta}+\underbrace{h_{\alpha \beta}^{\text {tidal }}}_{\sim r^{\ell}}+\underbrace{h_{\alpha \beta}^{\text {resp }}}_{\sim r^{(\ell+1)}} \longrightarrow\left\{\begin{array}{l}
M_{\ell m}=\dot{M}_{\ell m}+\delta M_{\ell m} \\
S_{\ell m}=\dot{S}_{\ell m}+\delta S_{\ell m}
\end{array}\right.
$$

- Four families of tidal deformability parameters:

$$
\begin{aligned}
\lambda_{\ell^{\prime} m m^{\prime}}^{M \mathcal{E}} & \equiv \frac{\partial \delta M_{\ell m}}{\partial \mathcal{E}_{\ell^{\prime} m^{\prime}}}
\end{aligned} \quad \lambda_{\ell \ell^{\prime} m m^{\prime}}^{S \mathcal{B}} \equiv \frac{\partial \delta S_{\ell m}}{\partial \mathcal{B}_{\ell^{\prime} m^{\prime}}}
$$

Black holes have zero Love numbers

Reference	Background	Tidal field
[Binnington \& Poisson 2009]	Schwarzschild	weak, generic ℓ
[Damour \& Nagar 2009]	Schwarzschild	weak, generic ℓ
[Kol \& Smolkin 2012]	Schwarzschild	weak, electric-type
[Chakrabarti et al. 2013]	Schwarzschild	weak, electric, $\ell=2$
[Gürlebeck 2015]	Schwarzschild	strong, axisymmetric
[Landry \& Poisson 2015]	Kerr to $O(S)$	weak, quadrupolar
[Pani et al. 2015]	Kerr to $O\left(S^{2}\right)$	weak, $(\ell, m)=(2,0)$

Problem of fine-tuning from an Effective-Field-Theory perspective

Investigating Kerr's Love

$\left(\mathcal{E}_{\ell m}, \mathcal{B}_{\ell m}\right)$

$$
\left(\mathcal{E}_{\ell m}, \mathcal{B}_{\ell m}\right) \rightarrow \psi_{0} \rightarrow \Psi \rightarrow h_{\alpha \beta} \rightarrow\left(M_{\ell m}, S_{\ell m}\right) \rightarrow \lambda_{\ell m}^{M / S, \mathcal{E} / \mathcal{B}}
$$

Metric reconstruction through the Hertz potential Ψ

Perturbed Weyl scalar

- Recall that in the Newtonian limit we established

$$
\lim _{c \rightarrow \infty} \psi_{0}^{\ell m} \propto \mathcal{E}_{\ell m} r^{\ell-2}\left[1+2 k_{\ell m}(R / r)^{2 \ell+1}\right]_{2} Y_{\ell m}(\theta, \phi)
$$

- For a Kerr black hole the perturbed Weyl scalar reads

$$
\psi_{0}^{\ell m} \propto\left[\mathcal{E}_{\ell m}+\frac{3 i}{\ell+1} \mathcal{B}_{\ell m}\right] R_{\ell m}(r)_{2} Y_{\ell m}(\theta, \phi)
$$

- Asymptotic behavior of general solution of static radial Teukolsky equation:

$$
R_{\ell m}(r)=\underbrace{r^{\ell-2}(1+\cdots)}_{\text {tidal field } R_{\ell m}^{\text {tidal }}}+\kappa_{\ell m} \underbrace{r^{-\ell-3}(1+\cdots)}_{\text {linear response } R_{\ell m}^{\text {resp }}}
$$

Why analytic continuation?

$$
R_{\ell m}(r)=\underbrace{r^{\ell-2}(1+\cdots)}_{\text {tidal field } R_{\ell m}^{\text {tidal }}}+\kappa_{\ell m} \underbrace{r^{-\ell-3}(1+\cdots)}_{\text {linear response } R_{\ell m}^{\text {resp }}}
$$

Ambiguity in the linear response [Fang \& Lovelace 2005; Gralla 2018]
The decaying solution $R_{\ell m}^{\text {resp }}$ is affected by a radial coord. transfo.

Ambiguity in the tidal field [Pani, Gualtieri, Maselli \& Ferrari 2015]
The growing solution $R_{\ell m}^{\text {tidal }}+\alpha R_{\ell m}^{\text {resp }}$ still qualifies as a tidal solution

Kerr black hole linear response

$$
R_{\ell m}(r)=\underbrace{R_{\ell m}^{\mathrm{tidal}}(r)}_{\sim r^{\ell-2}}+2 k_{\ell m} \underbrace{R_{\ell m}^{\mathrm{resp}}(r)}_{\sim r^{-(\ell+3)}}
$$

- The coefficients $k_{\ell m}$ can be interpreted as the Newtonian Love numbers of a Kerr black hole and read

$$
k_{\ell m}=-i m \chi \frac{(\ell+2)!(\ell-2)!}{4(2 \ell+1)!(2 \ell)!} \prod_{n=1}^{\ell}\left[n^{2}\left(1-\chi^{2}\right)+m^{2} \chi^{2}\right]
$$

- The linear response vanishes identically when:
- the black hole spin vanishes $(\chi=0)$
- the tidal field is axisymmetric ($m=0$)
- Reconstruct the Kerr black hole response $h_{\alpha \beta}^{\text {resp }}$ via $\Psi^{\text {resp }}$

Love numbers of a Kerr black hole

- We compute the Love numbers to linear order in $\chi \equiv S / M^{2}$

Love numbers of a Kerr black hole

- We compute the Love numbers to linear order in $\chi \equiv S / M^{2}$
- The modes of the mass/current quadrupole moments are

$$
\delta M_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{E}_{2 m} \quad \text { and } \quad \delta S_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{B}_{2 m}
$$

Love numbers of a Kerr black hole

- We compute the Love numbers to linear order in $\chi \equiv S / M^{2}$
- The modes of the mass/current quadrupole moments are

$$
\delta M_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{E}_{2 m} \quad \text { and } \quad \delta S_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{B}_{2 m}
$$

- The black hole tidal bulge is rotated by 45° with respect to the quadrupolar tidal perturbation

Love numbers of a Kerr black hole

- We compute the Love numbers to linear order in $\chi \equiv S / M^{2}$
- The modes of the mass/current quadrupole moments are

$$
\delta M_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{E}_{2 m} \quad \text { and } \quad \delta S_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{B}_{2 m}
$$

- The black hole tidal bulge is rotated by 45° with respect to the quadrupolar tidal perturbation
- The associated dimensionless tidal Love numbers are

$$
k_{2 m}^{M \mathcal{E}}=k_{2 m}^{S \mathcal{B}} \doteq-\frac{i m \chi}{120} \quad \text { and } \quad k_{2 m}^{M \mathcal{B}}=k_{2 m}^{S \mathcal{E}} \doteq 0
$$

Love numbers of a Kerr black hole

- We compute the Love numbers to linear order in $\chi \equiv S / M^{2}$
- The modes of the mass/current quadrupole moments are

$$
\delta M_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{E}_{2 m} \quad \text { and } \quad \delta S_{2 m} \doteq \frac{i m \chi}{180}(2 M)^{5} \mathcal{B}_{2 m}
$$

- The black hole tidal bulge is rotated by 45° with respect to the quadrupolar tidal perturbation
- The associated dimensionless tidal Love numbers are

$$
k_{2 m}^{M \mathcal{E}}=k_{2 m}^{S \mathcal{B}} \doteq-\frac{i m \chi}{120} \quad \text { and } \quad k_{2 m}^{M \mathcal{B}}=k_{2 m}^{S \mathcal{E}} \doteq 0
$$

- For a dimensionless black hole spin $\chi=0.1$ this gives

$$
\left|k_{2, \pm 2}\right| \simeq 2 \times 10^{-3} \quad \longrightarrow \quad \text { black holes are "rigid" }
$$

Love tensor of a Kerr black hole

- For a nonspinning compact body we have the proportionality relations

$$
\delta M_{a b}=\lambda_{2}^{\mathrm{el}} \mathcal{E}_{a b} \quad \text { and } \quad \delta S_{a b}=\lambda_{2}^{\mathrm{mag}} \mathcal{B}_{a b}
$$

- For a spinning black hole we have the more general tensorial relations

$$
\delta M_{a b}=\lambda_{a b c d} \mathcal{E}_{c d} \quad \text { and } \quad \delta S_{a b}=\lambda_{a b c d} \mathcal{B}_{c d}
$$

- To linear order in the black hole spin vector S^{a} we find

$$
\begin{aligned}
\delta M_{a b} & \doteq \frac{16}{45} M^{3} S^{c} \mathcal{E}_{(a}^{d} \varepsilon_{b) c d} \\
\delta S_{a b} & \doteq \frac{16}{45} M^{3} S^{c} \mathcal{B}^{d}{ }_{(a} \varepsilon_{b) c d}
\end{aligned}
$$

Love tensor of a Kerr black hole

$$
\begin{aligned}
\left(\lambda_{a b c d}\right) \doteq \frac{\chi}{180}(2 M)^{5}\left(\begin{array}{ccc}
\mathbf{I}_{11} & \mathbf{I}_{12} & \mathbf{I}_{13} \\
\mathbf{I}_{12} & -\mathbf{I}_{11} & \mathbf{I}_{23} \\
\mathbf{I}_{13} & \mathbf{I}_{23} & \mathbf{0}
\end{array}\right) \\
\mathbf{I}_{11} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \mathbf{I}_{12} \equiv\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & +1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\mathbf{I}_{13} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right) \quad \mathbf{I}_{23} \equiv\left(\begin{array}{ccc}
0 & 0 & -\frac{1}{2} \\
0 & 0 & 0 \\
-\frac{1}{2} & 0 & 0
\end{array}\right)
\end{aligned}
$$

Newtonian static quadrupolar tide

$$
\begin{array}{r}
\mathcal{E}_{a b}=\frac{\mu}{r^{3}}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \delta M_{a b} \doteq 3 Q\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\uparrow \\
\frac{\chi}{180}(2 M)^{5} \frac{\mu}{r^{3}}=q d^{2}
\end{array}
$$

Tidal torquing of a spinning black hole

[Thorne \& Hartle 1980; Poisson 2004]

$\left(\mathcal{E}_{a b}, \mathcal{B}_{a b}\right)$

- An arbitrary spinning body interacting with a tidal environment suffers a tidal torquing:

$$
\left\langle\dot{S}^{a}\right\rangle=-\varepsilon^{a b c}\left\langle M_{b d} \mathcal{E}^{d}{ }_{c}+S_{b d} \mathcal{B}^{d}{ }_{c}\right\rangle
$$

- Applied to a spinning black hole this yields

$$
\langle\dot{S}\rangle \doteq-\frac{8}{45} M^{5} \chi\left[2\left\langle E_{1}+B_{1}\right\rangle-3\left\langle E_{2}+B_{2}\right\rangle\right]
$$

Observing black hole tidal deformability

[Pani \& Maselli 2019]

Accumulated GW phase in LISA band during quasi-circular inspiral down to Schwarzschild ISCO:

$$
\Phi_{\text {tidal }} \simeq-2 \times 10^{3}\left(\frac{10^{-7}}{\mu / M}\right)\left(\frac{k_{2}}{0.002}\right)
$$

\uparrow
like 1st order dissipative self-force

Summary

- Love numbers of Kerr black holes do not vanish in general
- We computed in closed-form the leading (quadrupolar) Love numbers to linear order in the black hole spin
- Kerr black holes deform like any other self-gravitating body, despite being particularly "rigid" compact objects
- This is closely related to the phenomenon of tidal torquing
- The black hole tidal deformation contribution to the GW phase of EMRIs could be detectable by LISA
- New black hole test of the Kerr-like nature of the massive compact objects at the center of galaxies

Spinning black holes fall in Love!

Two basis of independent solutions

- Dimensionless radial coordinate and spin parameter:

$$
x \equiv \frac{r-r_{+}}{r_{+}-r_{-}} \quad \text { and } \quad \gamma=\frac{a}{r_{+}-r_{-}}
$$

- Smooth and unsmooth solutions:

$$
\begin{aligned}
R_{\ell m}^{\text {smooth }} & =x^{-2}(1+x)^{-2} \mathbf{F}(-\ell-2, \ell-1,-1+2 i m \gamma ;-x) \\
R_{\ell m}^{\text {unsmooth }} & =(1+1 / x)^{2 i m \gamma} \mathbf{F}(-\ell+2, \ell+3,3-2 i m \gamma ;-x)
\end{aligned}
$$

- Tidal and response solutions:

$$
\begin{aligned}
R_{\ell m}^{\mathrm{tidal}} & =\frac{x^{\ell}}{(1+x)^{2}} F(-\ell-2,-\ell-2 i m \gamma,-2 \ell ;-1 / x) \sim x^{\ell-2} \\
R_{\ell m}^{\mathrm{resp}} & =\frac{x^{-\ell-1}}{(1+x)^{2}} F(\ell-1, \ell+1-2 i m \gamma, 2 \ell+2 ;-1 / x) \sim x^{-\ell-3}
\end{aligned}
$$

To Love or not to Love?

$$
R_{\ell m}(r)=\underbrace{r^{\ell-2}(1+\cdots)}_{\text {tidal field } R_{\ell m}^{\text {tidal }}}+\kappa_{\ell m} \underbrace{r^{-\ell-3}(1+\cdots)}_{\text {linear response } R_{\ell m}^{\text {resp }}}
$$

To Love or not to Love?

$$
R_{\ell m}(r)=\underbrace{r^{\ell-2}(1+\cdots)}_{\text {tidal field } R_{\ell m}^{\text {tidal }}}+\kappa_{\ell m} \underbrace{r^{-\ell-3}(1+\cdots)}_{\text {linear response } R_{\ell m}^{\text {resp }}}
$$

Eric Poisson is not in Love

- The growing solution $R_{\ell m}^{\text {tidal }}$ is not unique
- Specify it uniquely by requiring its smoothness
- Since $R_{\ell m}$ is smooth, he concludes that $\kappa_{\ell m}=0$

To Love or not to Love?

$$
R_{\ell m}(r)=\underbrace{r^{\ell-2}(1+\cdots)}_{\text {tidal field } R_{\ell m}^{\text {tidal }}}+\kappa_{\ell m} \underbrace{r^{-\ell-3}(1+\cdots)}_{\text {linear response } R_{\ell m}^{\text {resp }}}
$$

Eric Poisson is not in Love

- The growing solution $R_{\ell m}^{\text {tidal }}$ is not unique
- Specify it uniquely by requiring its smoothness
- Since $R_{\ell m}$ is smooth, he concludes that $\kappa_{\ell m}=0$

Marc Casals and I are in Love

- Analytic continuation of $\ell \in \mathbb{R}$
- The growing/decaying solutions are specified uniquely
- Smoothness of $R_{\ell m}$ yields a response coefficient $\kappa_{\ell m} \neq 0$

To Love or not to Love?

$$
R_{\ell m}(r)=\underbrace{r^{\ell-2}(1+\cdots)}_{\text {tidal field } R_{\ell m}^{\text {tidal }}}+\kappa_{\ell m} \underbrace{r^{-\ell-3}(1+\cdots)}_{\text {linear response } R_{\ell m}^{\text {resp }}}
$$

Eric Poisson is not in Love

- The growing solution $R_{\ell m}^{\text {tidal }}$ is not unique
- Specify it uniquely by requiring its smoothness
- Since $R_{\ell m}$ is smooth, he concludes that $\kappa_{\ell m}=0$

Marc Casals and I are in Love

- Analytic continuation of $\ell \in \mathbb{R}$
- The growing/decaying solutions are specified uniquely
- Smoothness of $R_{\ell m}$ yields a response coefficient $\kappa_{\ell m} \neq 0$

Edgardo Franzin has mixed feelings

