Gravitational waves from binary systems of compact objects

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

Outline

1 Gravitational waves

3 Intermediate mass-ratio inspirals

Outline

1 Gravitational waves

② Gravitational-wave science

3 Intermediate mass-ratio inspirals

What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of spacetime that propagates at the vacuum speed of light

Key prediction of Einstein's general theory of relativity

What is a gravitational wave ?

(Credit: E. Gourgoulhon)

Electromagnetic vs gravitational waves

Electromagnetic waves Gravitational waves

Origin	electromagnetic field
Nature	waves in spacetime
Sources	accelerated charges
Wavelength	\ll size of source
Structure	dipolar
Coherence	low
Interaction	strong
Detection	power
Analogy	vision

spacetime curvature waves of spacetime accelerated masses \gtrsim size of source quadrupolar high weak amplitude audition

Complementary sources of information about the Universe

The gravitational-wave spectrum

Promising sources of gravitational waves

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

An example: the event GW151226

[PRL 116 (2016) 241103]

Outline

1 Gravitational waves

3 Intermediate mass-ratio inspirals

Ground-based interferometric detectors

Roadmap for ground-based detectors

[LRR 23 (2020) 3]

Current gravitational-wave detections

01	Gz		02			T SPA	2.2	A construction				
2015 - 2016			2016 - 2017	1 and		And and a	1000	alles 1		_	2019 - 2020	
36 31	23 14	14 27	31 20	11 76	ю и	35 24	л <u>а</u>	15 13	35 27	40 29	8 22	25 18
63 CW15084	36 cw15/012	21 ownsizze	49 GW(70154	18 cw170608	80 GWTT0729	56 cwr70609	53 CW/70816	\$ 2.8 GW170#77	60 CINTROBIS	65 CW170823	105 GW90403,051519	41 cw190408_383802
30 8.3	35 24	48 32	41 32	2 14	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 60
37 CW190412	56 cw/90413_052964	76 CW190413_134308	70 CW190421_213856	3.2 cw/90x25	175 cw190426_190642	69 CW190503_185404	35 cw190512_380714	52 cw190513_205428	65 GW/90514_065416	59 GW190577_065101	101 GW190519_153544	156 cw/90521
42 33	37 23	0 44	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 CW190521_074359	56 CW190527_092055	111 GW790602_775927	87 CW190620_030421	56 cw/90630_185205	90 cw180701_203306	99 cw190706_222641	19 CW190707_083326	30 GW790708_232457	55 GW190779_25554	20 cw190720_000836	17 GW790725_174728	64 cw/90727_060333
12 81	42 29	37 27	48 32	23 26	32 26	24 10	44 36	35 24	44 24	93 21	89 S	21 16
20 cw190728_064510	67 CW190731_M0936	62 cwmoio3,022701	76 cwm0005_21107	26 GW/90874	55 CW190828,063405	33 CW190828,065509	76 CW190970_112807	57 GW90915,235702	66 CW790966_200658	11 CW190977, TH430	13 GW790924,021846	35 GW790925, 232845
40 23	81 24	12 7.8		11 72	65 47	29 5.9	12 8.3	53 24	11 67	27 79	12 8.2	25 18
61 cw190926.050336	102 cw190929,012149	19 cw190130,133541	19 cw/9703_012549	18 cwm105.143521	107 cw19009.010777	34 GW191113_077753	20 GW191126,115259	76 CW19/127.05/0227	17 GW9129.134029	45 cw19(204_10629	19 CW199204_171526	41 CW191215.223062
	37 12	45 35	49 37		36 28		42 33	34 29	10 7.3	38 27	9 U	36 27
19 cw191216_213338	32 GW/90219_363720	76 cw19/222_033537	82 CW191230_180458	11 GW200105,162426	61 cw200112,155838	7.2 CW20015,042309	71 cw200128,022011	60 GW200123.065458	17 CW200202,154313	63 CW200208,130177	61 GW200208,222677	60 CW200209_065452
0 24 2.8	s1 30	38 28	87 61	39 28	40 53	19 14	38 20	28 15	36 M	34 28		34 14
27 cw200210.092254	78 GW200236_220804	62 CW200279_094415	141 cw200220.06/928	64 CW200220_124850	69 0W200224_222234	32 cw200225_060421	56 cw200302_015811	42 GW203306,093714	47 GW200308.173609	59 GW200311_115853	20 CW200316_225756	53 cw200322.00033

Area that the mass extrements shown here do not holized up reactisation, which is only the final mass is construction large the driver is used to be used on the structure process in bits and provide the than the primary plus the technology means indicated for detection. They extra mass is probable the sweet of the basis of the plus of the technology of detection plus the technology of the technology of the technology plus of the alternate technology of the technology plus.

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

Isotropic gravitational-wave background

[PRD 104 (2021) 022004]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Fermi

LIGO

Frequency (Hz)

Time from merger (seconds)

[ApJ 848 (2017) L12] A binary neutron star merger

[ApJ 848 (2017) L12] Multi-messenger astronomy

Swift, AGILE, CALET, H.E.S.S., HAWC, Konu	is-Wind							
							•	
		1		11	- I		/ \	
					-		/ 1	
				1		/		
Cumbres, SkyMapper, VISTA, MASTER, Mag	ellan, Subaru, Pan-ST VIRT SALT CHILESC	ARBS1,						
te Sky, AST3-2, ATLAS, Danish Tel, DFN, T80	S, EABA		· IN					
	/							
zer, NTT, GROND, SOAR, NOT, ESO-VLT, Ka	nata Telescope, HST							
						ИТН		
R, LWA, ALMA, OVRO, EVN, e-MERLIN, Mee	rKAT, Parkes, SRT, El	felsberg					/	
				· · · ·			· · / .	1
10 ⁻²	10-1			100			101	1
	Switt, AGILE, CALET, H.E.S.S., HAWC, Kon, L. Combres, SkyMagner, VISTA, MASTEP, Mag Gotto, SSAR, ESCV11, KMINNE, ESOVET, By, KSTSG, ATLK, Sharah TR, HON, TR Zer, NTT, GROND, SOAR, NOT, ESO-VIJ, Ka R, LWG, ACMA, OVRO, EVN, e-MERLIN, Mer	Swift, AGILE, CALET, H.E.S.S., HAWC, Konue-Wind Swift, AGILE, CALET, H.E.S.S., HAWC, Konue-Wind Cumbres, SkyMapper, VISTA, MASTER, Magelian, Subaru, Pan-ST OND, SOAR, ESO-VIT, KNTHNE, ESO-VIST, VIRT, SAT, CHLESO Sey, NST3-4, ALS, Suman Nu, DrA, 1965, EAAA zer, NTT, GROND, SOAR, NOT, ESO-VI, T, Kanata Telescope, HST R, LWA, ACMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, ET	Swift, AGILE, CALET, H.E.S.S., HAWC, Konue-Wind Cumbres, SkyMapper, VISTA, MASTER, Magelian, Subaru, Pan-STARB91, Combres, SkyMapper, VISTA, MASTER, Magelian, SkyMapper	Swift, AGILE, CALET, H.E.S.S., HAWC, Konue-Wind	Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind			

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Consistency test for final mass and spin

 $\Phi(f) \propto \sum_{i=-2}^7 \varphi_i f^{(i-5)/3}$

Null test for Kerr black hole ringdown

[PRD 103 (2021) 122002]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Falsifying scalar-tensor theories

$$|c_g/c - 1| < 10^{-15}$$

[PRL 119 (2017) 251304]
Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Tidal deformability of neutron stars

[PRL 119 (2017) 161101]

Mass, radius and equation of state

[LIGO-P1800115 (2018)]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Independent measure of Hubble's constant

Evolution of the Hubble parameter

z

[LIGO-P2100185 (2021)]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Constraints on cosmic strings

[PRL 126 (2021) 241102]

LISA: a gravitational antenna in space

The *LISA mission* proposal was accepted by ESA in 2017 for L3 slot, with a launch planned for 2034 [http://www.lisamission.org]

LISA sources of gravitational waves

Multi-band gravitational-wave astronomy

[PRL 116 (2016) 231102]

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

Do black holes have hair?

Geodesy

Botromeladesy

 $M_\ell + iS_\ell = M(ia)^\ell$

 $M_{\ell m}$ arbitrary

Gravitational-wave science

Fundamental physics

- Strong-field tests of GR
- Black hole no-hair theorem
- Cosmic censorship conjecture
- Dark energy equation of state
- Alternatives to general relativity

Astrophysics

- Formation and evolution of compact binaries
- Origin and mechanisms of γ -ray bursts
- Internal structure of neutron stars

Cosmology

- Cosmography and measure of Hubble's constant
- Origin and growth of supermassive black holes
- Phase transitions during primordial Universe

How do massive black holes form?

Outline

1 Gravitational waves

2 Gravitational-wave science

3 Intermediate mass-ratio inspirals

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Systematic uncertainties in modeling IMRIs

The mass ratio of GW191219_163120's source is inferred to be $q = 0.038^{+0.005}_{-0.004}$, which is extremely challenging for waveform modeling, and thus there may be systematic uncertainties in results for this candidate.

Modeling of higher-order multipole moments is particularly important for inferring the properties of systems with unequal masses, and may impact inference of parameters including the mass ratio, inclination and distance.

[LIGO-P2000318 (2021)]

Perturbation theory for comparable masses

Relativistic orbital dynamics

- Periastron advance [Le Tiec et al. PRL 2011; PRD 2013]
- Binding energy [Le Tiec, Buonanno & Barausse PRL 2012]
- Surface gravity [Le Tiec & Grandclément CQG 2018]

Gravitational-wave emission

- Recoil velocity [Fitchett & Detweiler ApJ 1984, Nagar PRD 2013]
- Head-on waveform [Anninos et al. PRD 1995, Sperhake et al. PRD 2011]
- Inspiral phasing [van de Meent & Pfeiffer PRL 2020]
- Inspiral energy flux [Warburton et al. PRL 2021]

Perturbation theory for comparable masses

[van de Meent & Pfeiffer PRL 2020]

Second order gravitational self-force program

- Second-order gravitational self-force A. Pound, PRL **109** (2012) 051101
- Practical, covariant puncture for second-order self-force calculations A. Pound & J. Miller, PRD **89** (2014) 104020
- Second-order perturbation theory: Problems on large scales A. Pound, PRD **92** (2015) 104047
- Second-order perturbation theory: The problem of infinite mode coupling J. Miller, B. Wardell & A. Pound, PRD 94 (2016) 104018
- Nonlinear gravitational self-force: Second-order equation of motion A. Pound, PRD **95** (2017) 104056
- Second-order self-force calculation of gravitational binding energy in compact binaries

A. Pound, B. Wardell, N. Warburton & J. Miller, PRL 124 (2019) 021101

- Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime
 J. Miller & A. Pound, PRD 103 (2021) 064048
- Gravitational-wave energy flux for compact binaries through second order in the mass ratio

N. Warburton, A. Pound, B. Wardell et al., PRL 127 (2021) 151102

Second order gravitational self-force program

- Second-order gravitational self-force A. Pound, PRL **109** (2012) 051101
- Practical, covariant puncture for second-order self-force calculations A. Pound & J. Miller, PRD **89** (2014) 104020
- Second-order perturbation theory: Problems on large scales A. Pound, PRD **92** (2015) 104047
- Second-order perturbation theory: The problem of infinite mode coupling J. Miller, B. Wardell & A. Pound, PRD 94 (2016) 104018
- Nonlinear gravitational self-force: Second-order equation of motion A. Pound, PRD **95** (2017) 104056
- Second-order self-force calculation of gravitational binding energy in compact binaries

A. Pound, B. Wardell, N. Warburton & J. Miller, PRL 124 (2019) 021101

- Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime
 J. Miller & A. Pound, PRD 103 (2021) 064048
- Gravitational-wave energy flux for compact binaries through second order in the mass ratio

N. Warburton, A. Pound, B. Wardell et al., PRL 127 (2021) 151102

Orbital evolution via energy balance

[Bondi et al. 1962; Sachs 1962]

Bondi mass-loss formula

$$\frac{\mathrm{d}M_{\mathsf{B}}}{\mathrm{d}u} = -\mathcal{F}(u)$$

• Gravitational binding energy

$$E \equiv M_{\rm B} - M_{\rm BH} - \mu$$

Orbital frequency evolution

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathcal{F}(\omega)}{E'(\omega)}$$

Second-order binding energy

[Pound et al. PRL 2020]

Second-order energy flux

[Warburton et al. PRL 2021]

Gravitational waveforms

[Wardell et al., submitted 2022]

Mode waveform amplitudes

[Wardell et al., submitted 2022]

Waveforms frequency evolution

[Wardell et al., submitted 2022]

Accumulated dephasing

[Wardell et al., submitted 2022]

t/M
Summary and prospects

- Intermediate mass ratio inspirals (IMRIs) are promising gravitational-wave sources for LIGO-Virgo and LISA
- IMRIs are chalenging for existing modeling techniques and current templates are not reliable for q ≥ 30
- Post-adiabatic waveforms agree remarkably well with the results from full numerical relativity with $1 \leqslant q \leqslant 10$
- Second-order gravitational self-force theory will be used to model EMRIs, IMRIs and possibly comparable-mass systems
- In the near future: transition to plunge / add black hole spin