# First laws of compact binary mechanics 

Alexandre Le Tiec

Laboratoire Univers et Théories
Observatoire de Paris / CNRS


## The laws of black hole mechanics <br> [Hawking 1972, Bardeen, Carter \& Hawking 1973]

- Zeroth law of mechanics:

$$
\kappa=\text { const. }(\text { on } \mathcal{H})
$$



- First law of mechanics:

$$
\delta M=\omega_{H} \delta S+\frac{\kappa}{8 \pi} \delta A
$$

- Second law of mechanics:

$$
\delta A \geq 0
$$



## What is the horizon surface gravity?



## What is the horizon surface gravity?



- For an event horizon $\mathcal{H}$ generated by a Killing field $k^{\alpha}$ :

$$
\left.\kappa^{2} \equiv \frac{1}{2}\left(\nabla^{\alpha} k^{\beta} \nabla_{\beta} k_{\alpha}\right)\right|_{\mathcal{H}}
$$

## What is the horizon surface gravity?



- For an event horizon $\mathcal{H}$ generated by a Killing field $k^{\alpha}$ :

$$
\left.\kappa^{2} \equiv \frac{1}{2}\left(\nabla^{\alpha} k^{\beta} \nabla_{\beta} k_{\alpha}\right)\right|_{\mathcal{H}}
$$

- For a Schwarzschild black hole of mass $M$, this yields

$$
\kappa=\frac{1}{4 M}=\frac{G M}{R_{\mathrm{S}}^{2}}
$$

## Outline

(1) Circular-orbit binaries: geometrical methods

## (2) Beyond circular motion: Hamiltonian methods

## First laws of compact binary mechanics



$$
\begin{equation*}
\delta M-\omega_{H} \delta S=\frac{\kappa}{8 \pi} \delta A \tag{Bardeenetal.1973}
\end{equation*}
$$



$$
\delta M-\Omega \delta J=\sum_{a} \frac{\kappa_{a}}{8 \pi} \delta A_{a}
$$

[Friedman et al. 2002]


$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}
$$

[Le Tiec et al. 2012]
[Blanchet et al. 2013]


$$
\delta M-\Omega \delta J=\frac{\kappa}{8 \pi} \delta A+z \delta m
$$

[Gralla \& Le Tiec 2013]

First laws of compact binary mechanics


$$
\begin{equation*}
\delta M-\omega_{H} \delta S=4 \mu \kappa \delta \mu \tag{Bardeenetal.1973}
\end{equation*}
$$



$$
\delta M-\Omega \delta J=\sum_{a} 4 \mu_{a} \kappa_{a} \delta \mu_{a}
$$

$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}
$$

[Le Tiec et al. 2012]
[Blanchet et al. 2013]

$$
\delta M-\Omega \delta J=4 \mu \kappa \delta \mu+z \delta m
$$

## Surface gravity and redshift variable

## [Pound (unpublished)]


(Credit: Zimmerman, Lewis \& Pfeiffer 2016)

## Surface gravity vs orbital frequency

[Le Tiec \& Grandclément 2018]


## Surface gravity vs orbital frequency

[Le Tiec \& Grandclément 2018]


## Perturbation theory for comparable masses



## Perturbation theory for comparable masses

Comparisons to numerical relativity

- Recoil velocity [Fitchett \& Detweiler 1984, Nagar 2013]
- Head-on waveform [Anninos et al. 1995, Sperhake et al. 2011]
- Inspiral waveform [van de Meent \& Pfeiffer 2020, Rifat et al. 2020]
- Periastron advance [Le Tiec et al. 2011, 2013]
- Binding energy [Le Tiec, Buonanno \& Barausse 2012]
- Surface gravity [Zimmerman et al. 2016, Le Tiec \& Grandclément 2018]

Structure of Einstein equation

- Polynomial nonlinearity using geometric variables [Harte 2014]
- Exact EOB energy map to $O(G)$ [Damour 2016, Vines 2017]
- Link to double copy?


## Multipolar gravitational skeleton

[Mathisson 1937, Tulczyjew 1957]


## Multipolar gravitational skeleton

[Mathisson 1937, Tulczyjew 1957]


## Quadrupolar particles on a circular orbit

## [Ramond, Le Tiec \& Noûs 2020]

- Helical Killing field $k^{\alpha}$ so that

$$
\mathcal{L}_{k} g_{\alpha \beta}=0
$$

- Each particle worldline $\gamma$ is an integral curve of $k^{\alpha}$ :

$$
\left.k^{\alpha}\right|_{\gamma}=z u^{\alpha}
$$

- The particle multipoles are all Lie-dragged along $k^{\alpha}$ :

$$
\mathcal{L}_{k} p^{\alpha}=\mathcal{L}_{k} S^{\alpha \beta}=\mathcal{L}_{k} Q^{\alpha \beta \rho \sigma}=0
$$



## First law with leading finite-size effects

[Ramond, Le Tiec \& Noûs (in progress)]


$$
\delta M-\Omega \delta J=\sum_{a}|k|_{a} \delta m_{a}
$$

## First law with leading finite-size effects

[Ramond, Le Tiec \& Noûs (in progress)]


$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}
$$

## First law with leading finite-size effects

[Ramond, Le Tiec \& Noûs (in progress)]


$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}-\sum_{a}|\nabla k|_{a} \delta S_{a}
$$

## First law with leading finite-size effects

[Ramond, Le Tiec \& Noûs (in progress)]


First law with leading finite-size effects
[Ramond, Le Tiec \& Noûs (in progress)]


$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}-\sum_{a}\left(\Omega-\Omega_{a}\right) \delta S_{a}+\sum_{a}|\nabla \nabla k|_{a} \delta Q_{a}
$$

First law with leading finite-size effects
[Ramond, Le Tiec \& Noûs (in progress)]


$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}-\sum_{a}\left(\Omega-\Omega_{a}\right) \delta S_{a}+\sum_{a} \mathcal{E}_{a} \delta Q_{a}
$$

## First law with leading finite-size effects

[Ramond, Le Tiec \& Noûs (in progress)]


$$
\delta M-\Omega \delta J=\sum_{a} z_{a} \delta m_{a}-\sum_{a}\left(\Omega-\Omega_{a}\right) \delta S_{a}+\sum_{a} \mathcal{E}_{a} \delta Q_{a}
$$

- Spin-induced quadrupole $Q_{\text {spin }} \sim \kappa S^{2}$
- Tidally-induced quadrupole $Q_{\text {tidal }} \sim \lambda \mathcal{E}$


## Tidal deformability of Kerr black holes

[Le Tiec \& Casals 2020, Goldberger's talk]


Conservative tidal Love number or dissipative tidal torquing?

## Outline

## (1) Circular-orbit binaries: geometrical methods

(2) Beyond circular motion: Hamiltonian methods

## Averaged redshift for eccentric orbits

## [Barack \& Sago 2011]

- Generic eccentric orbit parameterized by the two requencies

$$
\Omega_{r}=\frac{2 \pi}{P}, \quad \Omega_{\phi}=\frac{\phi}{P}
$$

- Time average of redshift $z=\mathrm{d} \tau / \mathrm{d} t$ over one radial period

$$
\langle z\rangle \equiv \frac{1}{P} \int_{0}^{P} z(t) \mathrm{d} t=\frac{T}{P}
$$



## First law of mechanics for eccentric orbits

## [Le Tiec 2015, Blanchet \& Le Tiec 2017]

- Canonical ADM Hamiltonian $H\left(\mathbf{x}_{a}, \mathbf{p}_{a} ; m_{a}\right)$ of two point particles with constant masses $m_{a}$
- Variation $\delta H+$ Hamilton's equation + orbital averaging:

$$
\delta M=\Omega_{\phi} \delta L+\Omega_{r} \delta J_{r}+\sum_{a}\left\langle z_{a}\right\rangle \delta m_{a}
$$

- Starting at 4PN order the binary dynamics gets nonlocal in time because of gravitational-wave tails:

$$
H_{\text {tail }}^{4 \mathrm{PN}}\left[\mathbf{x}_{a}(t), \mathbf{p}_{a}(t)\right]=-\frac{M}{5} \hat{l}_{i j}^{(3)}(t) \underset{2 r}{\operatorname{Pf}} \int_{-\infty}^{+\infty} \frac{\mathrm{d} \tau}{\tau} \hat{l}_{i j}^{(3)}(t+\tau)
$$

- With appropriate $M, L$ and $J_{r}$ the first law still holds


## EOB dynamics beyond circular motion



- Conservative EOB dynamics determined by "potentials"

$$
\begin{aligned}
& A(r)=1-2 M / r+\nu a(r)+\cdots \\
& \bar{D}(r)=1+\nu \bar{d}(r)+\cdots \\
& Q(r)=\nu q(r) p_{r}^{4}+\cdots
\end{aligned}
$$

- Functions $a(r), \bar{d}(r)$ and $q(r)$ controlled by $\langle z\rangle_{\operatorname{GSF}}\left(\Omega_{r}, \Omega_{\phi}\right)$


## EOB dynamics beyond circular motion

[Akcay \& van de Meent 2016]


## EOB dynamics beyond circular motion

[Akcay \& van de Meent 2016]


## Particle Hamiltonian first law

- Geodesic motion of test mass $m$ in Kerr geometry $\bar{g}_{\alpha \beta}$ derives from canonical Hamiltonian

$$
\bar{H}\left(x^{\mu}, p_{\mu}\right)=\frac{1}{2 m} \bar{g}^{\alpha \beta}(x) p_{\alpha} p_{\beta}
$$

## Particle Hamiltonian first law

- Geodesic motion of test mass $m$ in Kerr geometry $\bar{g}_{\alpha \beta}$ derives from canonical Hamiltonian

$$
\bar{H}\left(x^{\mu}, p_{\mu}\right)=\frac{1}{2 m} \bar{g}^{\alpha \beta}(x) p_{\alpha} p_{\beta}
$$

- Hamilton-Jacobi equation is completely separable [Carter 1968]


## Particle Hamiltonian first law

- Geodesic motion of test mass $m$ in Kerr geometry $\bar{g}_{\alpha \beta}$ derives from canonical Hamiltonian

$$
\bar{H}\left(x^{\mu}, p_{\mu}\right)=\frac{1}{2 m} \bar{g}^{\alpha \beta}(x) p_{\alpha} p_{\beta}
$$

- Hamilton-Jacobi equation is completely separable [Carter 1968]
- Canonical transformation $\left(x^{\mu}, p_{\mu}\right) \rightarrow\left(q_{\alpha}, J_{\alpha}\right)$ to generalized action-angle variables [Schmidt 2002, Hinderer \& Flanagan 2008]

$$
\frac{\mathrm{d} J_{\alpha}}{\mathrm{d} \tau}=-\frac{\partial \bar{H}}{\partial q_{\alpha}}=0, \quad \frac{\mathrm{~d} q_{\alpha}}{\mathrm{d} \tau}=\frac{\partial \bar{H}}{\partial J_{\alpha}} \equiv \omega_{\alpha}
$$

## Particle Hamiltonian first law

- Geodesic motion of test mass $m$ in Kerr geometry $\bar{g}_{\alpha \beta}$ derives from canonical Hamiltonian

$$
\bar{H}\left(x^{\mu}, p_{\mu}\right)=\frac{1}{2 m} \bar{g}^{\alpha \beta}(x) p_{\alpha} p_{\beta}
$$

- Hamilton-Jacobi equation is completely separable [Carter 1968]
- Canonical transformation $\left(x^{\mu}, p_{\mu}\right) \rightarrow\left(q_{\alpha}, J_{\alpha}\right)$ to generalized action-angle variables [Schmidt 2002, Hinderer \& Flanagan 2008]

$$
\frac{\mathrm{d} J_{\alpha}}{\mathrm{d} \tau}=-\frac{\partial \bar{H}}{\partial q_{\alpha}}=0, \quad \frac{\mathrm{~d} q_{\alpha}}{\mathrm{d} \tau}=\frac{\partial \bar{H}}{\partial J_{\alpha}} \equiv \omega_{\alpha}
$$

- Varying $\bar{H}\left(J_{\alpha}\right)$ yields a particle Hamiltonian first law valid for generic bound orbits [Le Tiec 2014]

$$
\delta E=\Omega_{\phi} \delta L+\Omega_{r} \delta J_{r}+\Omega_{\theta} \delta J_{\theta}+\langle z\rangle \delta m
$$

## Including conservative self-force effects

## [Fujita, Isoyama, Le Tiec, Nakano, Sago \& Tanaka 2017]

- Geodesic motion of self-gravitating mass $m$ in time-symmetric regular metric $\bar{g}_{\alpha \beta}+h_{\alpha \beta}^{\mathrm{R}}$ derives from canonical Hamiltonian

$$
H\left(x^{\mu}, p_{\mu} ; \gamma\right)=\bar{H}\left(x^{\mu}, p_{\mu}\right)+H_{\text {int }}\left(x^{\mu}, p_{\mu} ; \gamma\right)
$$

## Including conservative self-force effects

## [Fujita, Isoyama, Le Tiec, Nakano, Sago \& Tanaka 2017]

- Geodesic motion of self-gravitating mass $m$ in time-symmetric regular metric $\bar{g}_{\alpha \beta}+h_{\alpha \beta}^{\mathrm{R}}$ derives from canonical Hamiltonian

$$
H\left(x^{\mu}, p_{\mu} ; \gamma\right)=\bar{H}\left(x^{\mu}, p_{\mu}\right)+H_{\mathrm{int}}\left(x^{\mu}, p_{\mu} ; \gamma\right)
$$

- In class of canonical gauges, one can define a unique effective Hamiltonian $\mathcal{H}(J)=\bar{H}(J)+\frac{1}{2}\left\langle H_{\text {int }}\right\rangle(J)$ yielding a first law valid for generic bound orbits:

$$
\delta \mathcal{E}=\Omega_{\phi} \delta \mathcal{L}+\Omega_{r} \delta \mathcal{J}_{r}+\Omega_{\theta} \delta \mathcal{J}_{\theta}+\langle z\rangle \delta m
$$

## Including conservative self-force effects

## [Fujita, Isoyama, Le Tiec, Nakano, Sago \& Tanaka 2017]

- Geodesic motion of self-gravitating mass $m$ in time-symmetric regular metric $\bar{g}_{\alpha \beta}+h_{\alpha \beta}^{\mathrm{R}}$ derives from canonical Hamiltonian

$$
H\left(x^{\mu}, p_{\mu} ; \gamma\right)=\bar{H}\left(x^{\mu}, p_{\mu}\right)+H_{\text {int }}\left(x^{\mu}, p_{\mu} ; \gamma\right)
$$

- In class of canonical gauges, one can define a unique effective Hamiltonian $\mathcal{H}(J)=\bar{H}(J)+\frac{1}{2}\left\langle H_{\text {int }}\right\rangle(J)$ yielding a first law valid for generic bound orbits:

$$
\delta \mathcal{E}=\Omega_{\phi} \delta \mathcal{L}+\Omega_{r} \delta \mathcal{J}_{r}+\Omega_{\theta} \delta \mathcal{J}_{\theta}+\langle z\rangle \delta m
$$

- The actions $\mathcal{J}_{\alpha}$ and the averaged redshift $\langle z\rangle$, as functions of ( $\Omega_{r}, \Omega_{\theta}, \Omega_{\phi}$ ), include conservative self-force corrections from the gauge-invariant averaged interaction Hamiltonian $\left\langle H_{\text {int }}\right\rangle$


## Applications of the first laws

- Fix 'ambiguity parameters' in 4PN two-body equations of motion [Jaranowski \& Schäfer 2012, Damour et al. 2014, Bernard et al. 2016]
- Inform the 5PN two-body Hamiltonian in a 'tutti-frutti' method [Bini, Damour \& Geralico 2019, 2020]
- Compute GSF contributions to energy and angular momentum [Le Tiec, Barausse \& Buonanno 2012]
- Calculate Schwarzschild and Kerr ISCO frequency shifts [Le Tiec et al. 2012, Akcay et al. 2012, Isoyama et al. 2014]
- Test cosmic censorship conjecture including GSF effects [Colleoni \& Barack 2015, Colleoni et al. 2015]
- Calibrate EOB potentials in effective Hamiltonian [Barausse et al. 2012, Akcay \& van de Meent 2016, Bini et al. 2016]
- Compare particle redshift to black hole surface gravity [Zimmerman, Lewis \& Pfeiffer 2016, Le Tiec \& Grandclément 2018]
- Benchmark for calculations of Schwarzschild IBSO frequency shift and gravitational binding energy [Barack et al. 2019, Pound et al. 2020]


## Summary

- The classical laws of black hole mechanics can be extended to binary systems of compact objects
- First laws of mechanics come in a variety of different forms:
- Context: exact GR, self-force theory, PN theory
- Objects: black holes, multipolar point particles
- Orbits: circular, generic bound
- Derivation: geometric, Hamiltonian
- Combined with the first law, the redshift $z(\Omega)$ provides crucial information about the binary dynamics:
- Gravitational binding energy $E$ and angular momentum $J$
- ISCO frequency $\Omega_{\text {ISCO }}$ and IBSO frequency $\Omega_{\text {IBSo }}$
- EOB effective potentials $A, \bar{D}, Q, \ldots$
- Horizon surface gravity $\kappa$


## Prospects

- Small-mass-ratio approximation useful to build templates for IMRIs and even comparable-mass binaries
- Exploit the Hamiltonian first law for a particle in Kerr:
- Innermost spherical orbits
- Marginally bound orbits
- Extend Hamiltonian first law for two spinning particles:
- Non-aligned spins and generic precessing orbits
- Contribution from quadrupole moments
- Link to unbound orbits and scattering angle via analytic continuation?
- Derive a first law in post-Minkowskian gravity?
- Derive a first law with dissipation?

